Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Med Phys ; 51(5): 3796-3805, 2024 May.
Article in English | MEDLINE | ID: mdl-38588477

ABSTRACT

BACKGROUND: The Relative Biological Effectiveness (RBE) of kilovoltage photon beams has been previously investigated in vitro and in silico using analytical methods. The estimated values range from 1.03 to 1.82 depending on the methodology and beam energies examined. PURPOSE: The focus of this work was to independently estimate RBE values for a range of clinically used kilovoltage beams (70-200 kVp) while investigating the suitability of using TOPAS-nBio for this task. METHODS: Previously validated spectra of clinical beams were used to generate secondary electron spectra at several depths in a water tank phantom via TOPAS Monte Carlo (MC) simulations. Cell geometry was irradiated with the secondary electrons in TOPAS-nBio MC simulations. The deposited dose and the calculated number of DNA strand breaks were used to estimate RBE values. RESULTS: Monoenergetic secondary electron simulations revealed the highest direct and indirect double strand break yield at approximately 20 keV. The average RBE value for the kilovoltage beams was calculated to be 1.14. CONCLUSIONS: TOPAS-nBio was successfully used to estimate the RBE values for a range of clinical radiotherapy beams. The calculated value was in agreement with previous estimates, providing confidence in its clinical use in the future.


Subject(s)
DNA Breaks, Double-Stranded , Monte Carlo Method , Relative Biological Effectiveness , DNA Breaks, Double-Stranded/radiation effects , Humans , Electrons , Radiotherapy Dosage , Photons , Computer Simulation , Phantoms, Imaging
2.
J Appl Clin Med Phys ; 24(2): e13832, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36444164

ABSTRACT

Kilovoltage radiotherapy dose calculations are generally performed with manual point dose calculations based on water dosimetry. Tissue heterogeneities, irregular surfaces, and introduction of lead cutouts for treatment are either not taken into account or crudely approximated in manual calculations. Full Monte Carlo (MC) simulations can account for these limitations but require a validated treatment unit model, accurately segmented patient tissues and a treatment planning interface (TPI) to facilitate the simulation setup and result analysis. EGSnrc was used in this work to create a model of Xstrahl kilovoltage unit extending the range of energies, applicators, and validation parameters previously published. The novel functionality of the Python-based framework developed in this work allowed beam modification using custom lead cutouts and shields, commonly present in kilovoltage treatments, as well as absolute dose normalization using the output of the unit. 3D user-friendly planning interface of the developed framework facilitated non-co-planar beam setups for CT phantom MC simulations in DOSXYZnrc. The MC models of 49 clinical beams showed good agreement with measured and reference data, to within 2% for percentage depth dose curves, 4% for beam profiles at various depths, 2% for backscatter factors, 0.5 mm of absorber material for half-value layers, and 3% for output factors. End-to-end testing of the framework using custom lead cutouts resulted in good agreement to within 3% of absolute dose distribution between simulations and EBT3 GafChromic film measurements. Gamma analysis demonstrated poor agreement at the field edges which was attributed to the limitations of simulating smooth cutout shapes. Dose simulated in a heterogeneous phantom agreed to within 7% with measured values converted using the ratio of mass energy absorption coefficients of appropriate tissues and air.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Humans , Radiometry/methods , Computer Simulation , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Monte Carlo Method , Radiotherapy Dosage
3.
Rep Pract Oncol Radiother ; 25(1): 60-63, 2020.
Article in English | MEDLINE | ID: mdl-31889923

ABSTRACT

AIM: To determine the energy and dose dependence of GafChromic EBT3-V3 film over an energy range 0.2 mm Al HVL to 6 MV. BACKGROUND: The decay scheme of a brachytherapy source may be complex and the spectrum of energy can be wide. LiF TLDs are the golden standard recommended for dosimetric measures in brachytherapy, for their energy independence, but TLDs could be not available in some centres. An alternative way to perform dose measurements is to use GafChromic films, but they show energy dependence. METHODS AND MATERIALS: Films have been irradiated at increasing dose with three different beams: 6 MV beam, TPR20, 10 = (0.684 ±â€¯0.01), HVL = (2.00 ±â€¯0.01)mmAl and HVL = (0.20 ±â€¯0.01)mmAl. Calibration curves were generated using the same dose range (0cGy to 850cGy) for the three energies. Using the 6 MV calibration curve as reference, the film response in terms of net optical density (OD) was evaluated. RESULTS: The difference in the calibration curve obtained by irradiating the film with 6 MV and 2 mm Al HVL energy beams is less than 3 %, within the calibration uncertainty, in the dose range 500-850cGy. The OD of EBT3-V3 film is significantly lower at 0.2 mmAl HVL compared to 6 MV, showing differences up to 25 %. CONCLUSION: Within the range 6 MV-2 mm Al HVL and dose higher than 500cGy, GafChromic EBT3-V3 films are energy independent. In this dose range, films can be calibrated in a simple geometry, using a 6 MV Linac beam, and can be used for brachytherapy sources dose measures. The use of EBT3 films can be extended to reference dosimetry in Ir-192 clinical brachytherapy.

4.
J Appl Clin Med Phys ; 17(4): 37-47, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27455495

ABSTRACT

Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process.


Subject(s)
Quality Assurance, Health Care/standards , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Semiconductors , Algorithms , Gamma Rays , Humans , Monte Carlo Method , Radiotherapy Dosage , Software
5.
Med Phys ; 37(1): 49-53, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20175465

ABSTRACT

PURPOSE: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. METHODS: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 degrees with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). RESULTS: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL(theta) varies by about 11% for an off-axis ray angle theta = 10 degrees. These results agree within +/- 2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 degrees. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. CONCLUSIONS: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.


Subject(s)
Particle Accelerators/instrumentation , Proton Therapy , Radiometry/methods , Radiotherapy, High-Energy/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Radiotherapy Dosage , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
6.
Radiother Oncol ; 93(1): 141-6, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19592123

ABSTRACT

PURPOSE: To determine dosimetric properties of unflattened megavoltage photon beams. MATERIALS AND METHODS: Dosimetric data including depth dose, profiles, output factors and phantom scatter factors from three different beam qualities provided by Elekta Precise linacs, operated with and without flattening filter were examined. Additional measurements of leaf transmission, leakage radiation and surface dose were performed. In flattening filter free (FFF) mode a 6-mm thick copper filter was placed into the beam to stabilize it. RESULTS: Depths of dose maxima for flattened and unflattened beams did not deviate by more than 2mm and penumbral widths agreed within 1mm. In FFF mode the collimator exchange effect was found to be on average 0.3% for rectangular fields. Between maximum and minimum field size head scatter factors of unflattened beams showed on average 40% and 56% less variation for 6 and 10MV beams than conventional beams. Phantom scatter factors for FFF beams differed up to 4% from the published reference data. For field sizes smaller than 15cm, surface doses relative to the dose at d(max) increased for unflattened beams with maximum differences of 7% at 6MV and 25% at 10MV for a 5x5cm(2) field. For a 30x30cm(2) field, relative surface dose decreased by about 10% for FFF beams. Leaf transmission on the central axis was 0.3% and 0.4% lower for unflattened 6 and 10MV beams, respectively. Leakage radiation was reduced by 52% for 6MV and by 65% for 10MV unflattened beams. CONCLUSIONS: The results of the study were independently confirmed at two radiotherapy centres. Phantom scatter reference data need to be reconsidered for medical accelerators operated without a flattening filter.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Dose-Response Relationship, Radiation , Filtration/instrumentation , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Photons/therapeutic use , Radiation Injuries/prevention & control , Radiation Monitoring , Radiation Tolerance , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Scattering, Radiation , Sensitivity and Specificity
7.
Med Phys ; 36(4): 1318-29, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19472639

ABSTRACT

The characteristics of an Elekta amorphous silicon (a-Si) electronic portal imaging device (EPID) in response to a 6 MV photon beam generated without a flattening filter, an unflattened beam, have been determined. The characteristics were then compared to those for a conventional photon beam generated with a flattening filter in the beam, a flattened beam, in order to determine the suitability of an a-Si EPID for transit dosimetry. The response of the EPID to the unflattened beam increased by 7.3% compared to the flattened beam, and copper buildup of 3 mm reduces the variation in the EPID response over air gaps ranging from 60 to 40 cm to within 2.5%. The scattering properties of the EPID with changing field size for the unflattened beam agree with those measured for a flattened beam to within 2%. Due to the minimal variation in the energy spectrum of the unflattened beam with the distance from the central axis, it was expected and experimentally found that the profile shape of the unflattened beam changes minimally with increasing phantom thickness. For an unflattened beam, EPID measured profiles with and without a phantom in the beam agree to within 2% using confidence limits. The difference between EPID and ionization chamber profiles measured at a depth of 5 cm in water is reduced compared to a flattened beam and remains unchanged with increasing phantom thickness. A difference of 4% was found between EPID profiles and the corresponding profiles measured with an ionization chamber measured in water over a range of phantom thickness. A calibration procedure was developed to convert EPID images to the equivalent absolute dose in water, at the EPID plane. A gamma evaluation was performed comparing the calibrated EPID images to dose measured with an ionization chamber array for rectangular fields and an IMRT segment. The fields were situated on axis and at 5 cm off axis with and without a 25 cm thick phantom in the beam. The gamma evaluation criteria of 3% and 3 mm were met within the field, for all fields examined. This study concludes that a-Si EPIDs are suitable dosimeters for IMRT treatments using unflattened photon beams with the advantage that the characteristics of the unflattened beam result in a reduction in the number of measurements necessary to calibrate an a-Si EPID as a transit dosimeter.


Subject(s)
Particle Accelerators , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Calibration , Copper/chemistry , Dose-Response Relationship, Radiation , Equipment Design , Humans , Image Processing, Computer-Assisted , Photons , Radiotherapy Dosage , Reproducibility of Results , Scattering, Radiation , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...