Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; : OF1-OF15, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38588588

ABSTRACT

Gut-microbiota modulation shows promise in improving immune-checkpoint blockade (ICB) response; however, precision biomarker-driven, placebo-controlled trials are lacking. We performed a multicenter, randomized placebo-controlled, biomarker-stratified phase I trial in patients with ICB-naïve metastatic melanoma using SER-401, an orally delivered Firmicutes-enriched spore formulation. Fecal microbiota signatures were characterized at baseline; patients were stratified by high versus low Ruminococcaceae abundance prior to randomization to the SER-401 arm (oral vancomycin-preconditioning/SER-401 alone/nivolumab + SER-401), versus the placebo arm [placebo antibiotic/placebo microbiome modulation (PMM)/nivolumab + PMM (NCT03817125)]. Analysis of 14 accrued patients demonstrated that treatment with SER-401 + nivolumab was safe, with an objective response rate of 25% in the SER-401 arm and 67% in the placebo arm (though the study was under-powered related to poor accrual during the COVID-19 pandemic). Translational analyses demonstrated that vancomycin preconditioning was associated with the disruption of the gut microbiota and impaired immunity, with incomplete recovery at ICB administration (particularly in patients with high baseline Ruminococcaceae). These results have important implications for future microbiome modulation trials. SIGNIFICANCE: This first-of-its-kind, placebo-controlled, randomized biomarker-driven microbiome modulation trial demonstrated that vancomycin + SER-401 and anti-PD-1 are safe in melanoma patients. Although limited by poor accrual during the pandemic, important insights were gained via translational analyses, suggesting that antibiotic preconditioning and interventional drug dosing regimens should be carefully considered when designing such trials.

2.
J Infect Dis ; 228(10): 1452-1455, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37540090

ABSTRACT

BACKGROUND: Although fecal microbiota transplant has been used to prevent recurrent Clostridioides difficile infection (rCDI), documented pathogen transmissions highlight inherent safety risks of minimally processed stool. We describe manufacturing processes for fecal microbiota spores, live (VOWST; VOS, formerly SER-109), a microbiota-based oral therapeutic of Firmicutes spores. METHODS: Bacterial inactivation kill curves were obtained after ethanol exposure for 4 model organisms spiked into process intermediates. RESULTS: Bacterial log reduction factors ranged from 6.5 log10 to 7.4 log10 and lysis of spiked organisms occurred rapidly within 30 seconds. CONCLUSIONS: These experiments demonstrate substantial and rapid inactivation of representative organisms, supporting the potential benefit of VOS manufacturing processes to mitigate risk.


Subject(s)
Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Microbiota , Humans , Feces/microbiology , Fecal Microbiota Transplantation , Clostridium Infections/prevention & control , Clostridium Infections/microbiology , Recurrence
3.
Curr Opin Biotechnol ; 78: 102801, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228531

ABSTRACT

Research leading to characterization, quantification, and functional attribution of the microbes throughout the human body has led to many drug-development programs. These programs aim to manipulate a patient's microbiome through the addition of new strains or functions, the subtraction of deleterious microbes, or the rebalancing of the existing population through various drug modalities. Here, we present a general overview of those modalities with a specific focus on bacterial live biotherapeutic products (LBPs). The bacterial LBP modality has unique concerns to ensure product quality, thus, topics related to manufacturing, quality control, and regulation are addressed.


Subject(s)
Microbiota , Humans , Bacteria , Quality Control
4.
Open Forum Infect Dis ; 9(9): ofac448, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36158136

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may present risk to patients treated with donor-derived microbiome therapies when appropriate manufacturing controls and inactivation processes are lacking. We report that the manufacturing steps for SER-109, a purified investigational microbiome therapeutic developed to reduce risk of Clostridioides difficile recurrence, inactivate porcine epidemic diarrhea virus, a model coronavirus for SARS-CoV-2.

5.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36140013

ABSTRACT

Clostridioides difficile infection (CDI) is classified as an urgent health threat by the Centers for Disease Control and Prevention (CDC), and affects nearly 500,000 Americans annually. Approximately 20−25% of patients with a primary infection experience a recurrence, and the risk of recurrence increases with subsequent episodes to greater than 40%. The leading risk factor for CDI is broad-spectrum antibiotics, which leads to a loss of microbial diversity and impaired colonization resistance. Current FDA-approved CDI treatment strategies target toxin or toxin-producing bacteria, but do not address microbiome disruption, which is key to the pathogenesis of recurrent CDI. Fecal microbiota transplantation (FMT) reduces the risk of recurrent CDI through the restoration of microbial diversity. However, FDA safety alerts describing hospitalizations and deaths related to pathogen transmission have raised safety concerns with the use of unregulated and unstandardized donor-derived products. SER-109 is an investigational oral microbiome therapeutic composed of purified spore-forming Firmicutes. SER-109 was superior to a placebo in reducing CDI recurrence at Week 8 (12% vs. 40%, respectively; p < 0.001) in adults with a history of recurrent CDI with a favorable observed safety profile. Here, we discuss the role of the microbiome in CDI pathogenesis and the clinical development of SER-109, including its rigorous manufacturing process, which mitigates the risk of pathogen transmission. Additionally, we discuss compositional and functional changes in the gastrointestinal microbiome in patients with recurrent CDI following treatment with SER-109 that are critical to a sustained clinical response.

6.
N Engl J Med ; 386(3): 220-229, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35045228

ABSTRACT

BACKGROUND: Current therapies for recurrent Clostridioides difficile infection do not address the disrupted microbiome, which supports C. difficile spore germination into toxin-producing bacteria. SER-109 is an investigational microbiome therapeutic composed of purified Firmicutes spores for the treatment of recurrent C. difficile infection. METHODS: We conducted a phase 3, double-blind, randomized, placebo-controlled trial in which patients who had had three or more episodes of C. difficile infection (inclusive of the qualifying acute episode) received SER-109 or placebo (four capsules daily for 3 days) after standard-of-care antibiotic treatment. The primary efficacy objective was to show superiority of SER-109 as compared with placebo in reducing the risk of C. difficile infection recurrence up to 8 weeks after treatment. Diagnosis by toxin testing was performed at trial entry, and randomization was stratified according to age and antibiotic agent received. Analyses of safety, microbiome engraftment, and metabolites were also performed. RESULTS: Among the 281 patients screened, 182 were enrolled. The percentage of patients with recurrence of C. difficile infection was 12% in the SER-109 group and 40% in the placebo group (relative risk, 0.32; 95% confidence interval [CI], 0.18 to 0.58; P<0.001 for a relative risk of <1.0; P<0.001 for a relative risk of <0.833). SER-109 led to less frequent recurrence than placebo in analyses stratified according to age stratum (relative risk, 0.24 [95% CI, 0.07 to 0.78] for patients <65 years of age and 0.36 [95% CI, 0.18 to 0.72] for those ≥65 years) and antibiotic received (relative risk, 0.41 [95% CI, 0.22 to 0.79] with vancomycin and 0.09 [95% CI, 0.01 to 0.63] with fidaxomicin). Most adverse events were mild to moderate and were gastrointestinal in nature, with similar numbers in the two groups. SER-109 dose species were detected as early as week 1 and were associated with bile-acid profiles that are known to inhibit C. difficile spore germination. CONCLUSIONS: In patients with symptom resolution of C. difficile infection after treatment with standard-of-care antibiotics, oral administration of SER-109 was superior to placebo in reducing the risk of recurrent infection. The observed safety profile of SER-109 was similar to that of placebo. (Funded by Seres Therapeutics; ECOSPOR III ClinicalTrials.gov number, NCT03183128.).


Subject(s)
Clostridioides difficile , Clostridium Infections/therapy , Firmicutes , Aged , Anti-Bacterial Agents/adverse effects , Double-Blind Method , Feces/microbiology , Female , Gastrointestinal Tract/microbiology , Humans , Intention to Treat Analysis , Male , Microbiota/drug effects , Middle Aged , Recurrence , Secondary Prevention , Spores, Bacterial
7.
Clin Infect Dis ; 72(12): 2132-2140, 2021 06 15.
Article in English | MEDLINE | ID: mdl-32255488

ABSTRACT

BACKGROUND: Recurrent Clostridioides difficile infection (rCDI) is associated with loss of microbial diversity and microbe-derived secondary bile acids, which inhibit C. difficile germination and growth. SER-109, an investigational microbiome drug of donor-derived, purified spores, reduced recurrence in a dose-ranging, phase (P) 1 study in subjects with multiple rCDIs. METHODS: In a P2 double-blind trial, subjects with clinical resolution on standard-of-care antibiotics were stratified by age (< or ≥65 years) and randomized 2:1 to single-dose SER-109 or placebo. Subjects were diagnosed at study entry by PCR or toxin testing. Safety, C. difficile-positive diarrhea through week 8, SER-109 engraftment, and bile acid changes were assessed. RESULTS: 89 subjects enrolled (67% female; 80.9% diagnosed by PCR). rCDI rates were lower in the SER-109 arm than placebo (44.1% vs 53.3%) but did not meet statistical significance. In a preplanned analysis, rates were reduced among subjects ≥65 years (45.2% vs 80%, respectively; RR, 1.77; 95% CI, 1.11-2.81), while the <65 group showed no benefit. Early engraftment of SER-109 was associated with nonrecurrence (P < .05) and increased secondary bile acid concentrations (P < .0001). Whole-metagenomic sequencing from this study and the P1 study revealed previously unappreciated dose-dependent engraftment kinetics and confirmed an association between early engraftment and nonrecurrence. Engraftment kinetics suggest that P2 dosing was suboptimal. Adverse events were generally mild to moderate in severity. CONCLUSIONS: Early SER-109 engraftment was associated with reduced CDI recurrence and favorable safety was observed. A higher dose of SER-109 and requirements for toxin testing were implemented in the current P3 trial. CLINICAL TRIALS REGISTRATION: NCT02437487, https://clinicaltrials.gov/ct2/show/NCT02437487?term=SER-109&draw= 2&rank=4.


Subject(s)
Clostridioides difficile , Clostridium Infections , Microbiota , Aged , Clostridioides , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Drugs, Investigational , Female , Humans , Male , Recurrence
8.
J Biotechnol ; 132(3): 296-302, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17566581

ABSTRACT

Mechanical testing of solvent cast films consisting of short-chain-length (SCL) polyhydroxyalkanoate (PHA) films suggested that films consisting of block copolymers retained more elasticity over time with respect to films of similar random copolymers of comparable composition. Two experimental techniques, wide angle X-ray scattering (WAXS) and uniaxial extension, were used to quantitatively investigate the structure-property relationship of bacterially synthesized PHA block copolymers of poly(3-hydroxybutyrate) (PHB) homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) random copolymer (PHBV) segments. Uniaxial testing experiments yielded the Young's modulus, ultimate tensile strength, and the elongation until fracture of the films. Percent crystallinity was determined by deconvolution of amorphous and crystalline scattering peaks obtained from WAXS. Two PHBV films containing either 8% 3-hydroxyvalerate monomer (3HV) or 29% 3HV exhibited a quick transition to brittle behavior, decreasing to less than 20% percent elongation at fracture within a few days after annealing. Conversely, the block copolymer samples remained higher than 100% elongation at fracture a full 3 months after annealing. Because block copolymers covalently link polymers that would otherwise form thermodynamically separate phases, the rates and degrees of crystallization of the block copolymers are less than the random copolymer samples. These differences translate into materials that extend the property space of biologically synthesized SCL PHA.


Subject(s)
Bacteria/chemistry , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Biofilms , Crystallography, X-Ray , Molecular Weight , Structure-Activity Relationship , Tensile Strength , Time Factors
9.
Biomacromolecules ; 7(6): 1904-11, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16768413

ABSTRACT

Polyhydroxyalkanoates (PHA) containing block copolymers were synthesized in Cupriavidus necator using periodic substrate addition. Poly(3-hydroxybutyrate) (PHB) segments were formed during fructose utilization. Pulse feeds of pentanoic acid resulted in the synthesis of 3-hydroxyvalerate monomers, forming poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) random copolymer. PHA synthesis was controlled using analysis of oxygen uptake and carbon evolution rates from the bioreactor off-gas. A combination of characterization techniques applied to the polymer batches strongly suggests the presence of block copolymers: (i) Thermodynamically stable polymer samples obtained by fractionation and analyzed by differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR) indicate that some fractions, representing approximately 30% of the total polymer sample, exhibit melting characteristics and nearest-neighbor statistics indicative of block copolymers, (ii) preliminary rheology experiments indicate additional mesophase transitions only found in block copolymer materials, (iii) dynamic mechanical analysis shows extension of the rubbery plateaus in block copolymer samples, and (iv) uniaxial extension tests result in differences in mechanical properties (modulus and elongation at failure) expected of similarly prepared block copolymer and single polymer type materials.


Subject(s)
Cupriavidus necator/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Cells, Cultured , Chemical Phenomena , Chemistry, Physical , Hydroxybutyrates/chemistry , Polyesters/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...