Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 88(5): 053108, 2017 May.
Article in English | MEDLINE | ID: mdl-28571411

ABSTRACT

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

2.
Phys Rev Lett ; 104(24): 246401, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20867317

ABSTRACT

Detailed angle-resolved photoemission studies of Tb and Dy metal in the paramagnetic phase provide direct experimental proof of the presence of nesting features in the Fermi surfaces (FS) of these heavy lanthanide (Ln) metals. The observations clearly support the hypothesis that nesting of the FS in the paramagnetic phase is responsible for the development of helical antiferromagnetic ordering in heavy Ln metals. They also show that magnetic exchange splitting of the electronic states is responsible for the disappearance of FS nesting in the ferromagnetic phases.

3.
Phys Rev Lett ; 104(13): 136803, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481902

ABSTRACT

We have investigated the effects of doping on a single layer of graphene using angle-resolved photoemission spectroscopy. We show that many-body interactions severely warp the Fermi surface, leading to an extended van Hove singularity (EVHS) at the graphene M point. The ground state properties of graphene with such an EVHS are calculated, analyzing the competition between a magnetic instability and the tendency towards superconductivity. We find that the latter plays the dominant role as it is enhanced by the strong modulation of the interaction along the Fermi line, leading to an energy scale for the onset of the pairing instability as large as 1 meV when the Fermi energy is sufficiently close to the EVHS.

4.
Phys Rev Lett ; 102(8): 086102, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19257757

ABSTRACT

We have studied friction and dissipation in single and bilayer graphene films grown epitaxially on SiC. The friction on SiC is greatly reduced by a single layer of graphene and reduced by another factor of 2 on bilayer graphene. The friction contrast between single and bilayer graphene arises from a dramatic difference in electron-phonon coupling, which we discovered by means of angle-resolved photoemission spectroscopy. Bilayer graphene as a lubricant outperforms even graphite due to reduced adhesion.

5.
Phys Rev Lett ; 101(17): 177005, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18999778

ABSTRACT

We use angle-resolved photoemission spectroscopy to investigate the electronic properties of the newly discovered iron-arsenic superconductor Ba_(1-x)K_(x)Fe_(2)As_(2) and nonsuperconducting BaFe_(2)As_(2). Our study indicates that the Fermi surface of the undoped, parent compound BaFe_(2)As_(2) consists of hole pocket(s) at Gamma (0,0) and larger electron pocket(s) at X (1,0), in general agreement with full-potential linearized plane wave calculations. Upon doping with potassium, the hole pocket expands and the electron pocket becomes smaller with its bottom approaching the chemical potential. Such an evolution of the Fermi surface is consistent with hole doping within a rigid-band shift model. Our results also indicate that the full-potential linearized plane wave calculation is a reasonable approach for modeling the electronic properties of both undoped and K-doped iron arsenites.

6.
Phys Rev Lett ; 100(7): 076802, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352584

ABSTRACT

The Pb/Si(557) system exhibits a strong anisotropy in conductance below 78 K, with the evolution of a characteristic chain structure. Here we show, using angle-resolved photoemission, that chain ordering results in complete Fermi-like nesting in the direction normal to the chains; in addition, the domain structure along the chains forms split-off valence bands with mesoscopic Fermi wavelengths which induce the 1D conductance without further instabilities at low temperatures.

7.
Phys Rev Lett ; 98(20): 206802, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17677726

ABSTRACT

The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the pi bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the pi bands we derive the stacking order, layer-dependent electron potential, screening length, and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene's electronic structure.

8.
Phys Rev Lett ; 90(17): 176805, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12786093

ABSTRACT

A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of > or =1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

SELECTION OF CITATIONS
SEARCH DETAIL
...