Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 623(7986): 301-306, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938707

ABSTRACT

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

2.
Nano Lett ; 23(16): 7279-7287, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37527431

ABSTRACT

The current challenge to realizing continuously tunable magnetism lies in our inability to systematically change properties, such as valence, spin, and orbital degrees of freedom, as well as crystallographic geometry. Here, we demonstrate that ferromagnetism can be externally turned on with the application of low-energy helium implantation and can be subsequently erased and returned to the pristine state via annealing. This high level of continuous control is made possible by targeting magnetic metastability in the ultrahigh-conductivity, nonmagnetic layered oxide PdCoO2 where local lattice distortions generated by helium implantation induce the emergence of a net moment on the surrounding transition metal octahedral sites. These highly localized moments communicate through the itinerant metal states, which trigger the onset of percolated long-range ferromagnetism. The ability to continuously tune competing interactions enables tailoring precise magnetic and magnetotransport responses in an ultrahigh-conductivity film and will be critical to applications across spintronics.

3.
Nano Lett ; 22(21): 8647-8653, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36205576

ABSTRACT

Remote epitaxy is promising for the synthesis of lattice-mismatched materials, exfoliation of membranes, and reuse of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. Alternative mechanisms such as pinhole-seeded epitaxy or van der Waals epitaxy can often explain the resulting films. Here, we show that growth of the Heusler compound GdPtSb on clean graphene/sapphire produces a 30° rotated (R30) superstructure that cannot be explained by pinhole epitaxy. With decreasing temperature, the fraction of this R30 domain increases, compared to the direct epitaxial R0 domain, which can be explained by a competition between remote versus pinhole epitaxy. Careful graphene/substrate annealing and consideration of the relative lattice mismatches are required to obtain epitaxy to the underlying substrate across a series of other Heusler films, including LaPtSb and GdAuGe. The R30 superstructure provides a possible experimental fingerprint of remote epitaxy, since it is inconsistent with the leading alternative mechanisms.

4.
Adv Mater ; 34(24): e2200866, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429184

ABSTRACT

Bulk SrTiO3 is a well-known band insulator and the most common substrate used in the field of complex oxide heterostructures. Its surface and interface with other oxides, however, have demonstrated a variety of remarkable behaviors distinct from those expected. In this work, using a suite of in situ techniques to monitor both the atomic and electronic structures of the SrTiO3 (001) surface prior to and during growth, the disappearance and re-appearance of a 2D electron gas (2DEG) is observed after the completion of each SrO and TiO2 monolayer, respectively. The 2DEG is identified with the TiO2 double layer present at the initial SrTiO3 surface, which gives rise to a surface potential and mobile electrons due to vacancies within the TiO2-x adlayer. Much like the electronic reconstruction discovered in other systems, two atomic planes are required, here supplied by the double layer. The combined in situ scattering/spectroscopy findings resolve a number of longstanding issues associated with complex oxide interfaces, facilitating the employment of atomic-scale defect engineering in oxide electronics.

5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34531299

ABSTRACT

Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia, habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability-plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence.


Subject(s)
Algorithms , Aplysia/physiology , Artificial Intelligence , Insulator Elements , Neural Networks, Computer , Nickel/chemistry , Synapses/physiology , Animals , Electrons , Models, Neurological , Neuronal Plasticity
6.
Adv Mater ; 33(30): e2101591, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34137086

ABSTRACT

New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non-symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46 Te1.48 is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.

7.
Sci Adv ; 6(6): eaay6407, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083184

ABSTRACT

Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers.

8.
ACS Macro Lett ; 8(9): 1086-1090, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-35619447

ABSTRACT

Experimental validation of the predicted melt phase behavior of A/B mixed brush on planar substrate is presented using poly(methyl methacrylate) (A)/ polystyrene (B) (PMMA/PS) with equal number of A/B chains as an example. Well-defined mixed A/B brushes are synthesized using a single component inimer coating to achieve high grafting density (0.9 chains/nm2), uniformity of grafting sites, and predictable chain length. The inimer coating is a copolymer of nitroxide-mediated polymerization (NMP) inimer, atom transfer radical polymerization (ATRP) inimer, styrene, and glycidyl methacrylate (GMA). Cross-linking of the film provides the required stability to probe the melt morphology. Our studies show that even with equal grafting density of the A and B the morphology can be modulated by varying the length of B chains while keeping that of A fixed. We show the transition of self-assembled structures from disorder to cylinder to ripple phase at sub-30 nm length scale on a planar surface by thermal annealing of mixed brushes. These results are supported by a phase diagram established through Monte Carlo simulation using a coarse-grained particle-based model.

9.
Phys Rev Lett ; 103(5): 056404, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19792520

ABSTRACT

Here we show, with simultaneous transport and photoemission measurements, that the graphene-terminated SiC(0001) surface undergoes a metal-insulator transition upon dosing with small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi-liquid behavior and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.

10.
Nat Mater ; 8(3): 203-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19202545

ABSTRACT

Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

11.
Nat Mater ; 7(4): 258-9; author reply 259-60, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18354403
SELECTION OF CITATIONS
SEARCH DETAIL
...