Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Br J Haematol ; 205(1): 20-21, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763166

ABSTRACT

Histiocytic diseases arise from MAPK mutations in myeloid progenitors. Depending on whether the progenitor follows a dendritic cell or macrophage/monocyte lineage the final histology results in Langerhans cell histiocytosis, Rosai-Dorfman disease or Erdheim-Chester disease. Commentary on: Friedman et al. Mixed histiocytic neoplasms: A multicentre series revealing diverse somatic mutations and responses to targeted therapy. Br J Haematol 2024;205:127-137.


Subject(s)
Mutation , Humans , Erdheim-Chester Disease/genetics , Erdheim-Chester Disease/pathology , Erdheim-Chester Disease/diagnosis , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Sinus/pathology , Histiocytosis, Sinus/diagnosis , Histiocytosis, Sinus/genetics
2.
Cancer ; 130(14): 2416-2439, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38687639

ABSTRACT

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.


Subject(s)
Histiocytosis, Langerhans-Cell , Humans , Histiocytosis, Langerhans-Cell/drug therapy
3.
Br J Haematol ; 204(5): 1882-1887, 2024 May.
Article in English | MEDLINE | ID: mdl-38501390

ABSTRACT

Optimal therapeutic approaches for advanced Langerhans cell histiocytosis (LCH) are not known. We assessed the safety and efficacy of combined chemotherapy with MAPK pathway inhibition in 10 patients with refractory systemic disease and/or LCH-associated neurodegeneration. Overall response rate was 9/10 (90%) for the entire cohort: 5/5 (100%) for patients with systemic disease and 6/7 (86%) for patients with central nervous system disease. BRAFV600E+ peripheral blood fraction decreased in 5/6 (83%). Toxicities included fever, skin rash, myalgias, neuropathy, cytopenias and hypocalcaemia. Prospective trials are required to optimize combination strategies, determine potential to achieve cure and compare outcomes to chemotherapy or MAPK inhibitor monotherapy.


Subject(s)
Histiocytosis, Langerhans-Cell , MAP Kinase Signaling System , Protein Kinase Inhibitors , Female , Humans , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Histiocytosis, Langerhans-Cell/drug therapy , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Recurrence , Treatment Outcome
4.
Br J Haematol ; 204(5): 1888-1893, 2024 May.
Article in English | MEDLINE | ID: mdl-38501389

ABSTRACT

Over 50% of patients with systemic LCH are not cured with front-line therapies, and data to guide salvage options are limited. We describe 58 patients with LCH who were treated with clofarabine. Clofarabine monotherapy was active against LCH in this cohort, including heavily pretreated patients with a systemic objective response rate of 92.6%, higher in children (93.8%) than adults (83.3%). BRAFV600E+ variant allele frequency in peripheral blood is correlated with clinical responses. Prospective multicentre trials are warranted to determine optimal dosing, long-term efficacy, late toxicities, relative cost and patient-reported outcomes of clofarabine compared to alternative LCH salvage therapy strategies.


Subject(s)
Clofarabine , Histiocytosis, Langerhans-Cell , Humans , Clofarabine/therapeutic use , Clofarabine/administration & dosage , Histiocytosis, Langerhans-Cell/drug therapy , Male , Female , Adult , Adolescent , Child , Middle Aged , Child, Preschool , Young Adult , Aged , Recurrence , Proto-Oncogene Proteins B-raf/genetics , Infant , Treatment Outcome , Salvage Therapy , Adenine Nucleotides/therapeutic use , Adenine Nucleotides/administration & dosage , Adenine Nucleotides/adverse effects , Arabinonucleosides/therapeutic use , Arabinonucleosides/administration & dosage , Arabinonucleosides/adverse effects
6.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091952

ABSTRACT

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Subject(s)
Histiocytosis, Langerhans-Cell , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/therapy , Brain/metabolism , Myeloid Cells/metabolism , Cell Differentiation
7.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37873371

ABSTRACT

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

8.
J Neurosurg Case Lessons ; 6(16)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37870750

ABSTRACT

BACKGROUND: Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis characterized histologically by foamy histiocytes and Touton giant cells in a background of fibrosis. Bone pain with long bone osteosclerosis is highly specific for ECD. Central nervous system involvement is rare, although dural, hypothalamic, cerebellar, brainstem, and sellar region involvement has been described. OBSERVATIONS: A 59-year-old man with a history of ureteral obstruction, medically managed petit mal seizures, and a left temporal lesion followed with serial magnetic resonance imaging (MRI) presented with worsening seizure control. Repeat MRI identified bilateral amygdala region lesions. Gradual growth of the left temporal lesion over 1 year with increasing seizure frequency prompted resection. A non-Langerhans cell histiocytosis with a BRAF V600E mutation was identified on pathology. Imaging findings demonstrated retroperitoneal fibrosis and long bone osteosclerosis with increased fluorodeoxyglucose uptake that, together with the neuropathologic findings, were diagnostic of ECD. LESSONS: This case of biopsy-proven ECD is unique in that the singular symptom was seizures well controlled with medical management in the presence of similarly located bilateral anterior mesial temporal lobe lesions. Although ECD is rare intracranially, its variable imaging presentation, including the potential to mimic seizure-associated medial temporal lobe tumors, emphasizes the need for a wide differential diagnosis.

9.
Blood Adv ; 7(14): 3725-3734, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37042921

ABSTRACT

Overall survival after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (HCT) using alemtuzumab, fludarabine, and melphalan is associated with high rates of mixed chimerism (MC) and secondary graft failure (GF). We hypothesized that peritransplantation alemtuzumab levels or specific patterns of inflammation would predict these risks. We assessed samples from the Bone Marrow Transplant Clinical Trials Network 1204 (NCT01998633) to study the impact of alemtuzumab levels and cytokine patterns on MC and impending or established secondary GF (defined as donor chimerism <5% after initial engraftment and/or requirement of cellular intervention). Thirty-three patients with hemophagocytic lymphohistiocytosis (n = 25) and other IEIs (n = 8) who underwent HCTs with T-cell-replete grafts were included. Patients with day 0 alemtuzumab levels ≤0.32 µg/mL had a markedly lower incidence of MC, 14.3%, vs 90.9% in patients with levels >0.32 µg/mL (P = .008). Impending or established secondary GF was only observed in patients with day 0 alemtuzumab levels >0.32 µg/mL (P = .08). Unexpectedly, patients with impending or established secondary GF had lower CXCL9 levels. The cumulative incidence of impending or established secondary GF in patients with a day 14+ CXCL9 level ≤2394 pg/mL (day 14+ median) was 73.6% vs 0% in patients with a level >2394 pg/mL (P = .002). CXCL9 levels inversely correlated with alemtuzumab levels. These data suggest a model in which higher levels of alemtuzumab at day 0 deplete donor T cells, inhibit the graft-versus-marrow reaction (thereby suppressing CXCL9 levels), and adversely affect sustained engraftment in the nonmyeloablative HCT setting. This trial was registered at www.clinicaltrials.gov as #NCT01998633.


Subject(s)
Antibodies, Monoclonal, Humanized , Hematopoietic Stem Cell Transplantation , Humans , Alemtuzumab/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Melphalan/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Tissue Donors , Chemokine CXCL9
10.
Pediatr Hematol Oncol ; 40(5): 497-505, 2023.
Article in English | MEDLINE | ID: mdl-36625721

ABSTRACT

Patients with Langerhans cell histiocytosis (LCH) have been effectively treated with intravenous cytarabine. Intravenous or subcutaneous cytarabine infusions have been effective for leukemia patients, and pharmacokinetic studies have shown very similar blood levels of the drug with either route. We present three LCH patients treated with subcutaneous cytarabine either because intravenous access could not be maintained or due to patient refusal. One patient with pulmonary and skin LCH had a complete response. Another patient had a partial response of pulmonary and cutaneous lesions, but progressive bone disease. The third patient was treated for LCH-related cerebellar changes eight years after the diagnosis of isolated diabetes insipidus, with stable brain MRI for 5 years post-treatment. Subcutaneous cytarabine administration provides an alternative for patients with LCH in whom vascular access is not possible or practical, such as in some resource-limited circumstances.


Subject(s)
Histiocytosis, Langerhans-Cell , Skin Neoplasms , Humans , Cytarabine/therapeutic use , Histiocytosis, Langerhans-Cell/diagnostic imaging , Histiocytosis, Langerhans-Cell/drug therapy , Remission Induction , Magnetic Resonance Imaging
12.
Pediatr Blood Cancer ; 69(11): e29859, 2022 11.
Article in English | MEDLINE | ID: mdl-35713195

ABSTRACT

BACKGROUND: The association of childhood cancer with Lynch syndrome is not established compared with the significant pediatric cancer risk in recessive constitutional mismatch repair deficiency syndrome (CMMRD). PROCEDURE: We describe the clinical features, germline analysis, and tumor genomic profiling of patients with Lynch syndrome among patients enrolled in pediatric cancer genomic studies. RESULTS: There were six of 773 (0.8%) pediatric patients with solid tumors identified with Lynch syndrome, defined as a germline heterozygous pathogenic variant in one of the mismatch repair (MMR) genes (three with MSH6, two with MLH1, and one with MSH2). Tumor analysis demonstrated evidence for somatic second hits and/or increased tumor mutation burden in three of four patients with available tumor with potential implications for therapy and identification of at-risk family members. Only one patient met current guidelines for pediatric cancer genetics evaluation at the time of tumor diagnosis. CONCLUSION: Approximately 1% of children with cancer have Lynch syndrome, which is missed with current referral guidelines, suggesting the importance of adding MMR genes to tumor and hereditary pediatric cancer panels. Tumor analysis may provide the first suggestion of an underlying cancer predisposition syndrome and is useful in distinguishing between Lynch syndrome and CMMRD.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Brain Neoplasms , Child , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Germ-Line Mutation , Humans , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary
13.
Blood ; 139(17): 2601-2621, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35271698

ABSTRACT

Langerhans cell histiocytosis (LCH) can affect children and adults with a wide variety of clinical manifestations, including unifocal, single-system multifocal, single-system pulmonary (smoking-associated), or multisystem disease. The existing paradigms in the management of LCH in adults are mostly derived from the pediatric literature. Over the last decade, the discovery of clonality and MAPK-ERK pathway mutations in most cases led to the recognition of LCH as a hematopoietic neoplasm, opening the doors for treatment with targeted therapies. These advances have necessitated an update of the existing recommendations for the diagnosis and treatment of LCH in adults. This document presents consensus recommendations that resulted from the discussions at the annual Histiocyte Society meeting in 2019, encompassing clinical features, classification, diagnostic criteria, treatment algorithm, and response assessment for adults with LCH. The recommendations favor the use of 18F-Fluorodeoxyglucose positron emission tomography-based imaging for staging and response assessment in the majority of cases. Most adults with unifocal disease may be cured by local therapies, while the first-line treatment for single-system pulmonary LCH remains smoking cessation. Among patients not amenable or unresponsive to these treatments and/or have multifocal and multisystem disease, systemic treatments are recommended. Preferred systemic treatments in adults with LCH include cladribine or cytarabine, with the emerging role of targeted (BRAF and MEK inhibitor) therapies. Despite documented responses to treatments, many patients struggle with a high symptom burden from pain, fatigue, and mood disorders that should be acknowledged and managed appropriately.


Subject(s)
Histiocytosis, Langerhans-Cell , Adult , Child , Cladribine/therapeutic use , Consensus , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/therapy , Humans , MAP Kinase Signaling System , Mutation
14.
J Allergy Clin Immunol ; 149(2): 758-766, 2022 02.
Article in English | MEDLINE | ID: mdl-34329649

ABSTRACT

BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.


Subject(s)
Lymphoproliferative Disorders/genetics , Adolescent , Autoimmunity , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Testing , Herpesvirus 4, Human/isolation & purification , Humans , Immunity/genetics , Infant , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/mortality , Male , Exome Sequencing , Young Adult
15.
Nat Rev Dis Primers ; 7(1): 73, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620874

ABSTRACT

The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.


Subject(s)
Erdheim-Chester Disease , Histiocytosis, Langerhans-Cell , Histiocytosis, Sinus , Xanthogranuloma, Juvenile , Erdheim-Chester Disease/diagnosis , Erdheim-Chester Disease/genetics , Histiocytosis, Langerhans-Cell/diagnosis , Humans , Inflammation
17.
Blood Adv ; 5(17): 3457-3467, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34461635

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome characterized by pathologic immune activation in which prompt recognition and initiation of immune suppression is essential for survival. Children with HLH have many overlapping clinical features with critically ill children with sepsis and systemic inflammatory response syndrome (SIRS) in whom alternative therapies are indicated. To determine whether plasma biomarkers could differentiate HLH from other inflammatory conditions and to better define a core inflammatory signature of HLH, concentrations of inflammatory plasma proteins were compared in 40 patients with HLH to 47 pediatric patients with severe sepsis or SIRS. Fifteen of 135 analytes were significantly different in HLH plasma compared with SIRS/sepsis, including increased interferon-γ (IFN-γ)-regulated chemokines CXCL9, CXCL10, and CXCL11. Furthermore, a 2-analyte plasma protein classifier including CXCL9 and interleukin-6 was able to differentiate HLH from SIRS/sepsis. Gene expression in CD8+ T cells and activated monocytes from blood were also enriched for IFN-γ pathway signatures in peripheral blood cells from patients with HLH compared with SIRS/sepsis. This study identifies differential expression of inflammatory proteins as a diagnostic strategy to identify critically ill children with HLH, and comprehensive unbiased analysis of inflammatory plasma proteins and global gene expression demonstrates that IFN-γ signaling is uniquely elevated in HLH. In addition to demonstrating the ability of diagnostic criteria for HLH and sepsis or SIRS to identify groups with distinct inflammatory patterns, results from this study support the potential for prospective evaluation of inflammatory biomarkers to aid in diagnosis of and optimizing therapeutic strategies for children with distinctive hyperinflammatory syndromes.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Sepsis , Child , Diagnosis, Differential , Humans , Interferon-gamma , Lymphohistiocytosis, Hemophagocytic/diagnosis , Proteome , Sepsis/diagnosis , Systemic Inflammatory Response Syndrome/diagnosis
18.
Nat Med ; 27(5): 851-861, 2021 05.
Article in English | MEDLINE | ID: mdl-33958797

ABSTRACT

Langerhans cell histiocytosis (LCH) is a potentially fatal condition characterized by granulomatous lesions with characteristic clonal mononuclear phagocytes (MNPs) harboring activating somatic mutations in mitogen-activated protein kinase (MAPK) pathway genes, most notably BRAFV600E. We recently discovered that the BRAFV600E mutation can also affect multipotent hematopoietic progenitor cells (HPCs) in multisystem LCH disease. How the BRAFV600E mutation in HPCs leads to LCH is not known. Here we show that enforced expression of the BRAFV600E mutation in early mouse and human multipotent HPCs induced a senescence program that led to HPC growth arrest, apoptosis resistance and a senescence-associated secretory phenotype (SASP). SASP, in turn, promoted HPC skewing toward the MNP lineage, leading to the accumulation of senescent MNPs in tissue and the formation of LCH lesions. Accordingly, elimination of senescent cells using INK-ATTAC transgenic mice, as well as pharmacologic blockade of SASP, improved LCH disease in mice. These results identify senescent cells as a new target for the treatment of LCH.


Subject(s)
Cellular Senescence/genetics , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Langerhans Cells/pathology , Proto-Oncogene Proteins B-raf/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Cellular Senescence/drug effects , Cytokines/metabolism , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
19.
Clin Perinatol ; 48(1): 167-179, 2021 03.
Article in English | MEDLINE | ID: mdl-33583503

ABSTRACT

Langerhans cell histiocytosis, Rosai-Dorfman disease, and juvenile xanthogranuloma may present at birth or any time afterward. Some patients have minimal skin or lymph node involvement, but others present with life-threatening pulmonary, hepatic, bone marrow, or central nervous system lesions. There is often a delay in diagnosis because of confusing overlap with more common neonatal diseases. Many treatment regimens have been applied to these diseases, but those directed at myeloid cells, such as cytarabine and clofarabine or mutation-targeting inhibitors, are gaining favor. This article provides information on the pathophysiology, clinical presentation, evaluation guidelines, and treatment of these uncommon tumors of neonates.


Subject(s)
Histiocytosis, Langerhans-Cell , Histiocytosis, Sinus , Xanthogranuloma, Juvenile , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/drug therapy , Histiocytosis, Sinus/diagnosis , Histiocytosis, Sinus/drug therapy , Humans , Mutation , Skin , Xanthogranuloma, Juvenile/diagnosis , Xanthogranuloma, Juvenile/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...