Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 368(6489): 428-433, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32327598

ABSTRACT

The melanocortin-4 receptor (MC4R) is involved in energy homeostasis and is an important drug target for syndromic obesity. We report the structure of the antagonist SHU9119-bound human MC4R at 2.8-angstrom resolution. Ca2+ is identified as a cofactor that is complexed with residues from both the receptor and peptide ligand. Extracellular Ca2+ increases the affinity and potency of the endogenous agonist α-melanocyte-stimulating hormone at the MC4R by 37- and 600-fold, respectively. The ability of the MC4R crystallized construct to couple to ion channel Kir7.1, while lacking cyclic adenosine monophosphate stimulation, highlights a heterotrimeric GTP-binding protein (G protein)-independent mechanism for this signaling modality. MC4R is revealed as a structurally divergent G protein-coupled receptor (GPCR), with more similarity to lipidic GPCRs than to the homologous peptidic GPCRs.


Subject(s)
Calcium/chemistry , Receptor, Melanocortin, Type 4/chemistry , Receptors, G-Protein-Coupled/chemistry , Crystallography, X-Ray , Cyclic AMP/chemistry , Humans , Ligands , Melanocyte-Stimulating Hormones/chemistry , Melanocyte-Stimulating Hormones/pharmacology , Mutation , Potassium Channels, Inwardly Rectifying/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/genetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Signal Transduction
2.
Cell ; 173(1): 11-19, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29570991

ABSTRACT

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Subject(s)
Insulin-Secreting Cells/metabolism , Models, Biological , Computational Biology , Drug Discovery , Humans , Insulin-Secreting Cells/cytology , Proteins/chemistry , Proteins/metabolism
3.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290469

ABSTRACT

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Subject(s)
Allosteric Regulation , Receptor, Adenosine A2A/chemistry , Signal Transduction , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Allosteric Site , Animals , Molecular Docking Simulation , Pichia , Protein Binding , Receptor, Adenosine A2A/metabolism , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...