Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 631: 122477, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36509226

ABSTRACT

Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.


Subject(s)
Polyesters , Polymers , Humans , Polymers/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Printing, Three-Dimensional
2.
Transplant Cell Ther ; 27(12): 1022.e1-1022.e6, 2021 12.
Article in English | MEDLINE | ID: mdl-34571211

ABSTRACT

Changes to donor availability, collection center capacity, and travel restrictions during the early phase of the COVID-19 pandemic led to routine cryopreservation of most unrelated donor products for hematopoietic transplantation prior to the recipient commencing the conditioning regimen. We investigated the effect of this change on unrelated donor product quality and clinical outcomes. Product information was requested from transplantation centers in Australia and New Zealand and clinical outcome data from the Australasian Bone Marrow Transplant Recipient Registry (ABMTRR). In total, 191 products were collected between April 1, 2021, and September 30, 2021, and most (74%) were from international collection centers. Median post-thaw CD34 recovery was 78% (range 25% to 176%) and median post-thaw CD34 viability was 87% (range 34% to 112%). Median time to neutrophil recovery was 17 days (interquartile range 10 to 24 days), and graft failure occurred in 6 patients (4%). These clinical outcomes were similar to those of "fresh" unrelated donor transplants reported to the ABMTRR in 2019. However, recipient transplantation centers reported problems with 29% of products in the form of damage during transit, low cell dose, inadequate labeling, missing representative samples, or missing documentation. These problems were critical in 7 cases (4%). At last follow-up, 22 products (12%) had not been infused. Routine cryopreservation of unrelated donor hemopoietic progenitor cell products has enabled safe continuation of allogeneic transplant services during the COVID-19 pandemic. However, practices for product tracing, documentation, and transportation can be optimized, and measures to reduce the incidence of unused unrelated donor product are required.


Subject(s)
COVID-19 , Cryopreservation , Hematopoietic Stem Cells , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...