Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 90(10): 2922-32, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19886500

ABSTRACT

The demography of vertebrate populations is governed in part by processes operating at large spatial scales that have synchronizing effects on demographic parameters over large geographic areas, and in part, by local processes that generate fluctuations that are independent across populations. We describe a statistical model for the analysis of individual monitoring data at the multi-population scale that allows us to (1) split up temporal variation in survival into two components that account for these two types of processes and (2) evaluate the role of environmental factors in generating these two components. We derive from this model an index of synchrony among populations in the pattern of temporal variation in survival, and we evaluate the extent to which environmental factors contribute to synchronize or desynchronize survival variation among populations. When applied to individual monitoring data from four colonies of the Atlantic Puffin (Fratercula arctica), 67% of between-year variance in adult survival was accounted for by a global spatial-scale component, indicating substantial synchrony among colonies. Local sea surface temperature (SST) accounted for 40% of the global spatial-scale component but also for an equally large fraction of the local-scale component. SST thus acted at the same time as both a synchronizing and a desynchronizing agent. Between-year variation in adult survival not explained by the effect of local SST was as synchronized as total between-year variation, suggesting that other unknown environmental factors acted as synchronizing agents. Our approach, which focuses on demographic mechanisms at the multi-population scale, ideally should be combined with investigations of population size time series in order to characterize thoroughly the processes that underlie patterns of multi-population dynamics and, ultimately, range dynamics.


Subject(s)
Charadriiformes/physiology , Models, Biological , Animals , Population Dynamics , Time Factors
2.
J Anim Ecol ; 77(5): 974-83, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18624739

ABSTRACT

1. In long-lived animals with delayed maturity, the non-breeding component of the population may play an important role in buffering the effects of stochastic mortality. Populations of colonial seabirds often consist of more than 50% non-breeders, yet because they spend much of their early life at sea, we understand little about their impact on the demographic process. 2. Using multistate capture-mark-recapture techniques, we analyse a long-term data set of individually identifiable common guillemots, Uria aalge Pont., to assess factors influencing their immature survival and two-stage recruitment process. 3. Analysis of the distribution of ringed common guillemots during the non-breeding season, separated by age classes, revealed that all age classes were potentially at risk from four major oil spills. However, the youngest age class (0-3 years) were far more widely spread than birds 4-6 years old, which were more widely spread than birds aged 6 and over. Therefore the chance of encountering an oil spill was age-dependent. 4. A 2-year compound survival estimate for juvenile guillemots was weakly negatively correlated with winter sea-surface temperature, but was not influenced by oil spills. Non-breeder survival did not vary significantly over time. 5. In years following four oil spills, juvenile recruitment was almost double the value in non-oil-spill years. Recent work from Skomer Island showed a doubling of adult mortality associated with major oil spills, which probably reduced competition at the breeding colony, allowing increased immature recruitment to compensate for these losses. We discuss the implications of compensatory recruitment for assessing the impact of oil pollution incidents.


Subject(s)
Accidents , Charadriiformes/physiology , Climate , Petroleum , Water Pollutants, Chemical , Animals , Breeding , Ecology , Models, Biological , Population Dynamics , Seasons , Survival Analysis
3.
Proc Biol Sci ; 275(1637): 963-70, 2008 Apr 22.
Article in English | MEDLINE | ID: mdl-18230597

ABSTRACT

Apparent changes in breeding performance with age measured at the population level can be due to changes in individual capacity at different ages, or to the differential survival of individuals with different capabilities. Estimating the relative importance of the two is important for understanding ageing patterns in natural populations, but there are few studies of such populations in which these effects have been disentangled. We analysed laying date and clutch size as measures of individual performance in a population of mute swans (Cygnus olor) studied over 25 years at Abbotsbury, UK. On both measures of breeding performance, individuals tended to improve up to the age of 6 or 7, and to decline after about the age of 12. Individuals with longer lifespans performed better at all ages (earlier laying, larger clutches) than animals that ceased breeding earlier. We conclude that the apparent mean increase in performance with age in mute swans is due to both individual improvement and differential survival of individuals who perform well, while the decline in older age groups is due to individual loss of function. Our results underline the need to take individual differences into account when testing hypotheses about life histories in wild populations.


Subject(s)
Age Distribution , Anseriformes/physiology , Longevity , Reproduction/physiology , Animals , Clutch Size , Female , Male , Oviposition
4.
J Evol Biol ; 20(4): 1531-43, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17584246

ABSTRACT

Inbreeding resulting from the mating of two related individuals can reduce the fitness of their progeny. However, quantifying inbreeding depression in wild populations is challenging, requiring large sample sizes, detailed knowledge of life histories and study over many generations. Here we report analyses of the effects of close inbreeding, based on observations of mating between relatives, in a large, free-living noninsular great tit (Parus major) population monitored over 41 years. Although mating between close relatives (f > or = 0.125) was rare (1.0-2.6% of matings, depending on data set restrictiveness), we found pronounced inbreeding depression, which translated into reduced hatching success, fledging success, recruitment to the breeding population and production of grand offspring. An inbred mating at f = 0.25 had a 39% reduction in fitness relative to that of an outbred nest, when calculated in terms of recruitment success, and a 55% reduction in the number of fledged grand offspring. Our data show that inbreeding depression acts independently at each life-history stage in this population, and hence suggest that estimates of the fitness costs of inbreeding must focus on the entire life cycle.


Subject(s)
Inbreeding , Songbirds/genetics , Animals , Mating Preference, Animal , Phenotype
5.
Am Nat ; 164(3): E62-72, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15478083

ABSTRACT

Traits that are closely associated with fitness tend to have lower heritabilities (h2) than those that are not. This has been interpreted as evidence that natural selection tends to deplete genetic variation more rapidly for traits more closely associated with fitness (a corollary of Fisher's fundamental theorem), but Price and Schluter (1991) suggested the pattern might be due to higher residual variance in traits more closely related to fitness. The relationship between 10 different traits for females, seven traits for males, and overall fitness (lifetime recruitment) was quantified for great tits (Parus major) studied in their natural environment of Wytham Wood, England, using data collected over 39 years. Heritabilities and the coefficients of additive genetic and residual variance (CVA and CVR, respectively) were estimated using an "animal model." For both males and females, a trait's correlation (r) with fitness was negatively related to its h2 but positively related to its CVR. The CVA was not related to the trait's correlation with fitness in either sex. This is the third study using directly measured fitness in a wild population to show the important role of residual variation in determining the pattern of lower heritabilities for traits more closely related to fitness.


Subject(s)
Biological Evolution , Genetic Variation , Models, Biological , Passeriformes/genetics , Selection, Genetic , Animals , Female , Male , Passeriformes/physiology , Reproduction/genetics , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...