Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 322: 121151, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36709034

ABSTRACT

Marsh resilience post disturbance is strongly dependent on the belowground dynamics affecting the emergent plants aboveground. We investigated the long-term impacts at the marsh-water interface in coastal wetlands of south Louisiana after the 2010 Deepwater Horizon oil spill with a combination of fieldwork (2010-2018) and spatial analysis (1998-2021). Data were collected on shoreline erosion rates, marsh platform elevation heights and cantilever overhang widths, and soil strength up to 1 m depth. Oil concentration in the top 5 cm of the marsh soil were determined using gas chromatography/mass spectrometry and were 1000 times higher than before the spill and remained 10 times higher eight years post-oiling. The oiling initially caused the marsh edge to subside, and chronic effects lowered soil strength, creating a faster erosion rate and deeper water within 150 cm of the shoreline. Soil strength declined by 50% throughout the 1 m soil profile after oiling and has not recovered. The mean erosion rate for 11 years post-spill was double that before oiling and there was an additive impact on erosion rates after Hurricane Isaac. Erosion appeared to have recovered to pre-spill rates by 2019, however from 2019 to 2021, the rate increased by 118% above the pre-spill rate. The continuing loss of soil strength indicates that the belowground biomass was seriously compromised by oiling. The perpetuation of oil in the remaining marsh may have set a new baseline for soil strength and subsequent storm induced erosional events. The remaining marsh soils retain chronic physical and biological legacies compromising recovery for more than a decade that may be evident in other marsh habitats subject to oiling and other stressors.


Subject(s)
Petroleum Pollution , Wetlands , Soil , Petroleum Pollution/analysis , Ecosystem , Water/analysis
2.
Ecol Appl ; 32(1): e02489, 2022 01.
Article in English | MEDLINE | ID: mdl-34741358

ABSTRACT

Marine oil spills continue to be a global issue, heightened by spill events such as the 2010 Deepwater Horizon spill in the Gulf of Mexico, the largest marine oil spill in US waters and among the largest worldwide, affecting over 1,000 km of sensitive wetland shorelines, primarily salt marshes supporting numerous ecosystem functions. To synthesize the effects of the oil spill on foundational vegetation species in the salt marsh ecosystem, Spartina alterniflora and Juncus roemerianus, we performed a meta-analysis using data from 10 studies and 255 sampling sites over seven years post-spill. We examined the hypotheses that the oil spill reduced plant cover, stem density, vegetation height, aboveground biomass, and belowground biomass, and tracked the degree of effects temporally to estimate recovery time frames. All plant metrics indicated impacts from oiling, with 20-100% maximum reductions depending on oiling level and marsh zone. Peak reductions of ~70-90% in total plant cover, total aboveground biomass, and belowground biomass were observed for heavily oiled sites at the marsh edge. Both Spartina and Juncus were impacted, with Juncus affected to a greater degree. Most plant metrics had recovery time frames of three years or longer, including multiple metrics with incomplete recovery over the duration of our data, at least seven years post-spill. Belowground biomass was particularly concerning, because it declined over time in contrast with recovery trends in most aboveground metrics, serving as a strong indicator of ongoing impact, limited recovery, and impaired resilience. We conclude that the Deepwater Horizon spill had multiyear impacts on salt marsh vegetation, with full recovery likely to exceed 10 years, particularly in heavily oiled marshes, where erosion may preclude full recovery. Vegetation impacts and delayed recovery is likely to have exerted substantial influences on ecosystem processes and associated species, especially along heavily oiled shorelines. Our synthesis affords a greater understanding of ecosystem impacts and recovery following the Deepwater Horizon oil spill, and informs environmental impact analysis, contingency planning, emergency response, damage assessment, and restoration efforts related to oil spills.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Biomass , Ecosystem , Gulf of Mexico , Petroleum Pollution/adverse effects , Plants , Water Pollutants, Chemical/analysis , Wetlands
3.
Ecol Appl ; 31(6): e02382, 2021 09.
Article in English | MEDLINE | ID: mdl-34042243

ABSTRACT

One of the paramount goals of oyster reef living shorelines is to achieve sustained and adaptive coastal protection, which requires meeting ecological (i.e., develop a self-sustaining oyster population) and engineering (i.e., provide coastal defense) targets. In a large-scale comparison along the Atlantic and Gulf coasts of the United States, the efficacy of various designs of oyster reef living shorelines at providing wave attenuation was evaluated accounting for the ecological limitations of oysters with regard to inundation duration. A critical threshold for intertidal oyster reef establishment is 50% inundation duration. Living shorelines that spent less than one-half of the time (<50%) inundated were not considered suitable habitat for oysters, however, were effective at wave attenuation (68% reduction in wave height). Reefs that experienced >50% inundation were considered suitable habitat for oysters, but wave attenuation was similar to controls (no reef; ~5% reduction in wave height). Many of the oyster reef living shoreline approaches therefore failed to optimize the ecological and engineering goals. In both inundation regimes, wave transmission decreased with an increasing freeboard (difference between reef crest elevation and water level), supporting its importance in the wave attenuation capacity of oyster reef living shorelines. However, given that the reef crest elevation (and thus freeboard) should be determined by the inundation duration requirements of oysters, research needs to be refocused on understanding the implications of other reef parameters (e.g., width) for optimizing wave attenuation. A broader understanding of the reef characteristics and seascape contexts that result in effective coastal defense by oyster reefs is needed to inform appropriate design and implementation of oyster-based living shorelines globally.


Subject(s)
Ecosystem , Ostreidae , Water Movements , Animals
5.
Glob Chang Biol ; 27(6): 1226-1238, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33342009

ABSTRACT

Increases in minimum air temperatures have facilitated transitions of salt marshes to mangroves along coastlines in the southeastern United States. Numerous studies have documented mangrove expansion into salt marshes; however, a present-day conversion of oyster reefs to mangrove islands has not been documented. Using aerial photographs and high-resolution satellite imagery, we determined percent cover and number of mangrove patches on oyster reefs in Mosquito Lagoon, FL, USA over 74 years (1943-2017) by digitizing oyster reef and "mangrove on oyster reef" areas. Live oyster reefs present in 1943 were tracked through time and the mangrove area on every reef calculated for seven time periods. There was a 103% increase in mangrove cover on live oyster reefs from 1943 (6.6%) to 2017 (13.4%). Between 1943 and 1984, the cover remained consistent (~7%), while between 1984 and 2017, mangrove cover increased rapidly with a 6% year-1 increase in mangrove area on oyster reefs (198% increase). In 1943, 8.7% of individual reefs had at least one mangrove patch on them; by 2017, 21.8% of reefs did. Site visits found at least one mature Avicennia germinans on each tracked mangrove reef, with large numbers of smaller Rhizophora mangle, suggesting the post-1984 mangrove increases were the result of increased R. mangle recruitment and survival. Escalation in the coverage and number of mangrove stands on oyster reefs coincided with a period that lacked extreme freeze events. The time since a temperature of ≤-6.6°C (A. germinans mortality threshold) and ≤-4°C (R. mangle mortality threshold) were significantly correlated with the increased ratio of mangrove area:oyster area, total mangrove area, and number of mangrove patches, with greater variation explained by time since ≤ -4°C. The lack of freezes could lead globally to an ecosystem shift of intertidal oyster reefs to mangrove islands near poleward mangrove range limits.


Subject(s)
Avicennia , Ostreidae , Animals , Climate Change , Ecosystem , Southeastern United States , Wetlands
6.
Environ Pollut ; 252(Pt B): 1367-1376, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31254894

ABSTRACT

We measured the temporal and spatial trajectory of oiling from the April, 2010, Deepwater Horizon oil spill in water from Louisiana's continental shelf, the estuarine waters of Barataria Bay, and in coastal marsh sediments. The concentrations of 28 target alkanes and 43 target polycyclic aromatic hydrocarbons were determined in water samples collected on 10 offshore cruises, in 19 water samples collected monthly one km offshore at 13 inshore stations in 2010 and 2013, and in 16-60 surficial marsh sediment samples collected on each of 26 trips. The concentration of total aromatics in offshore waters peaked in late summer, 2010, at 100 times above the May, 2010 values, which were already slightly contaminated. There were no differences in surface or bottom water samples. The concentration of total aromatics declined at a rate of 73% y-1 to 1/1000th of the May 2010 values by summer 2016. The concentrations inside the estuary were proportional to those one km offshore, but were 10-30% lower. The oil concentrations in sediments were initially different at 1 and 10 m distance into the marsh, but became equal after 2 years. Thus, the distinction between oiled and unoiled sites became blurred, if not non-existent then, and oiling had spread over an area wider than was visible initially. The concentrations of oil in sediments were 100-1000 times above the May 2010 values, and dropped to 10 times higher after 8 years, thereafter, demonstrating a long-term contamination by oil or oil residues that will remain for decades. The chemical signature of the oil residues offshore compared to in the marsh reflects the more aerobic offshore conditions and water-soluble tendencies of the dissolved components, whereas the anaerobic marsh sediments will retain the heavier molecular components for a long time, and have a consequential effect on the ecosystems.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Petroleum Pollution/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Bays/chemistry , Estuaries , Gulf of Mexico , Louisiana , Wetlands
7.
PLoS One ; 13(12): e0207717, 2018.
Article in English | MEDLINE | ID: mdl-30550603

ABSTRACT

We determined the number of permits for oil and gas activities in 14 coastal Louisiana parishes from 1900 to 2017, compared them to land loss on this coast, and estimated their restoration potential. A total of 76,247 oil and gas recovery wells were permitted, of which 35,163 (46%) were on land (as of 2010) and 27,483 of which are officially abandoned. There is a direct spatial and temporal relationship between the number of these permits and land loss, attributable to the above and belowground changes in hydrology resulting from the dredged material levees placed parallel to the canal (spoil banks). These hydrologic modifications cause various direct and indirect compromises to plants and soils resulting in wetland collapse. Although oil and gas recovery beneath southern Louisiana wetlands has dramatically declined since its peak in the early 1960s, it has left behind spoil banks with a total length sufficient to cross coastal Louisiana 79 times from east to west. Dragging down the remaining material in the spoil bank back into the canal is a successful restoration technique that is rarely applied in Louisiana, but could be a dramatically cost-effective and proven long-term strategy if political will prevails. The absence of a State or Federal backfilling program is a huge missed opportunity to: 1) conduct cost-effective restoration at a relatively low cost, and, 2) conduct systematic restoration monitoring and hypothesis testing that advances knowledge and improves the efficacy of future attempts. The price of backfilling all canals is about $335 million dollars, or 0.67% of the State's Master Plan for restoration and a pittance of the economic value gained from extracting the oil and gas beneath over the last 100 years.


Subject(s)
Conservation of Natural Resources/methods , Conservation of Water Resources/methods , Wetlands , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Water Resources/economics , Conservation of Water Resources/legislation & jurisprudence , Ecosystem , Geologic Sediments , Hydrology , Licensure , Louisiana , Oil and Gas Industry/economics , Oil and Gas Industry/legislation & jurisprudence
8.
Mar Pollut Bull ; 110(1): 316-323, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27349381

ABSTRACT

Qualitative inferences and sparse bay-wide measurements suggest that shoreline erosion increased after the 2010 BP Deepwater Horizon (DWH) disaster, but quantifying the impacts has been elusive at the landscape scale. We quantified the shoreline erosion of 46 islands for before and after the DWH oil spill to determine how much shoreline was lost, if the losses were temporary, and if recovery/restoration occurred. The erosion rates at the oiled islands increased to 275% in the first six months after the oiling, were 200% of that of the unoiled islands for the first 2.5years after the oiling, and twelve times the average land loss in the deltaic plain of 0.4%y(-1) from 1988 to 2011. These results support the hypothesis that oiling compromised the belowground biomass of the emergent vegetation. The islands are, in effect, sentinels of marsh stability already in decline before the oil spill.


Subject(s)
Environment , Petroleum Pollution , Wetlands , Disasters , Gulf of Mexico , Islands , Louisiana , Soil
9.
Mar Pollut Bull ; 87(1-2): 57-67, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25176275

ABSTRACT

We measured the concentration of petroleum hydrocarbons in 405 wetland sediment samples immediately before the April 2010 Deepwater Horizon disaster led to their broad-scale oiling, and on nine trips afterwards. The average concentrations of alkanes and PAHs were 604 and 186 times the pre-spill baseline values, respectively. Oil was distributed with some attenuation up to 100m inland from the shoreline for alkanes, but increased for aromatics, and was not well-circumscribed by the rapid shoreline assessments (a.k.a. SCAT) of relative oiling. The concentrations of target alkanes and PAHs in June 2013 were about 1% and 5%, respectively, of the February 2011 concentrations, but remained at 3.7 and 33 times higher, respectively, than in May 2010. A recovery to baseline conditions suggests that the concentration of alkanes may be near baseline values by the end of 2015, but that it may take decades for the PAH concentrations to be that low.


Subject(s)
Petroleum Pollution , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Wetlands , Louisiana , Mississippi
SELECTION OF CITATIONS
SEARCH DETAIL
...