Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Kidney Int Rep ; 8(7): 1417-1429, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441484

ABSTRACT

Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods: We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results: The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion: Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.

2.
Sci Rep ; 13(1): 4683, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949059

ABSTRACT

Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgens , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Nifedipine/pharmacology , Mibefradil/pharmacology , Cell Line, Tumor , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Calcium Channels, L-Type/genetics
3.
Physiol Rep ; 11(3): e15583, 2023 02.
Article in English | MEDLINE | ID: mdl-36750122

ABSTRACT

In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 µM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 µM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired ß-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.


Subject(s)
Ether , Urinary Bladder , Rats , Animals , Urinary Bladder/metabolism , Ether/metabolism , Membrane Potentials/physiology , Muscle, Smooth/metabolism , Ethyl Ethers/metabolism , Ethers/metabolism , Nerve Tissue Proteins/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism
4.
Auton Neurosci ; 235: 102852, 2021 11.
Article in English | MEDLINE | ID: mdl-34329833

ABSTRACT

Knowledge of the participation of ATP and related purines in urinary tract physiology has been established over the last five decades through the work of many independent groups, inspired by, and building on the pioneering studies of Professor Geoffrey Burnstock and his coworkers. As part of a series of reviews in this tribute edition, the present article summarises our current understanding of purines and purinergic signalling in modulating and regulating urinary tract function. Purinergic mechanisms underlying the origin of bladder pain; sensations of bladder filling and urinary tract motility; and regulation of detrusor smooth muscle contraction are described, encompassing the relevant history of discovery and consolidation of knowledge as methodologies and pharmacological tools have developed. We consider normal physiology, including development and ageing and then move to pathophysiology, discussing the causal and consequential contribution of purinergic signalling mechanism and their constituent components (receptors, signal transduction, effector molecules) to bladder dysfunction.


Subject(s)
Receptors, Purinergic , Urinary Bladder , Adenosine Triphosphate , Muscle Contraction , Sensation , Signal Transduction
5.
Neurourol Urodyn ; 39 Suppl 3: S23-S29, 2020 07.
Article in English | MEDLINE | ID: mdl-32662560

ABSTRACT

AIMS: This article reviews current knowledge of the underpinning mechanisms of how the bladder senses fullness locally and also revisits clinical measurements of lower urinary tract sensation. The former represents cellular sensing during bladder filling whereas the latter describes the sensations leading to conscious perception of bladder fullness. METHODS: The topic was discussed in a "think tank" session at the 2019 International Consultation on Incontinence-Research Symposium in Bristol, UK; summarized in the present review. RESULTS: Recent advances in the basic science of bladder sensing relating to (a) the bladder wall-urothelial cells, sensory nerves, interstitial cells, and smooth muscle cells and (b) putative chemo/mechanosensors in the urethra-paraneurons or "brush cells" are discussed. Validated clinical measurement of lower urinary tract sensation is reviewed in the context of how this could be better harnessed for patient benefit. We discuss the potential of app/tablet/mobile technology based on triggers and distractors to override aberrant local sensing/higher sensation and how these technologies could be utilized in treatment. CONCLUSIONS: We conclude that a better understanding of bladder sensation is essential to inform clinical management of lower urinary tract symptoms.


Subject(s)
Lower Urinary Tract Symptoms/diagnosis , Sensation/physiology , Urethra/physiopathology , Urinary Bladder, Overactive/diagnosis , Humans , Lower Urinary Tract Symptoms/physiopathology , Quality Improvement , Quality of Health Care , Urinary Bladder, Overactive/physiopathology
6.
Neurourol Urodyn ; 39(7): 1930-1938, 2020 09.
Article in English | MEDLINE | ID: mdl-32609936

ABSTRACT

AIMS: Urofacial syndrome (UFS) is an autosomal recessive disease characterized by detrusor contraction against an incompletely dilated outflow tract. This dyssynergia causes dribbling incontinence and incomplete voiding. Around half of individuals with UFS have biallelic mutations of HPSE2 that encodes heparanase 2, a protein found in pelvic ganglia and bladder nerves. Homozygous Hpse2 mutant mice have abnormal patterns of nerves in the bladder body and outflow tract, and also have dysfunctional urinary voiding. We hypothesized that bladder neurophysiology is abnormal Hpse2 mutant mice. METHODS: Myography was used to study bladder bodies and outflow tracts isolated from juvenile mice. Myogenic function was analyzed after chemical stimulation or blockade of key receptors. Neurogenic function was assessed by electrical field stimulation (EFS). Muscarinic receptor expression was semi-quantified by Western blot analysis. RESULTS: Nitrergic nerve-mediated relaxation of precontracted mutant outflow tracts was significantly decreased vs littermate controls. The contractile ability of mutant outflow tracts was normal as assessed by KCl and the α1-adrenoceptor agonist phenylephrine. EFS of mutant bladder bodies induced significantly weaker contractions than controls. Conversely, the muscarinic agonist carbachol induced significantly stronger contractions of bladder body than controls. CONCLUSIONS: The Hpse2 model of UFS features aberrant bladder neuromuscular physiology. Further work is required to determine whether similar aberrations occur in patients with UFS.


Subject(s)
Glucuronidase/genetics , Urinary Bladder, Neurogenic/genetics , Urinary Bladder, Neurogenic/physiopathology , Urologic Diseases/genetics , Urologic Diseases/physiopathology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Carbachol/pharmacology , Electric Stimulation , Facies , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/pharmacology , Muscle Contraction/drug effects , Mutation/genetics , Nitric Oxide/physiology , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Receptors, Muscarinic/biosynthesis , Receptors, Muscarinic/genetics , Urodynamics
7.
Neurourol Urodyn ; 39 Suppl 3: S16-S22, 2020 07.
Article in English | MEDLINE | ID: mdl-32056281

ABSTRACT

Several studies indicate that pelvic ischemia and oxidative stress may play a significant role in lower urinary tract dysfunction (LUTD), including detrusor overactivity (DO)/overactive bladder (OAB) and detrusor underactivity (DU)/underactive bladder (UAB). The present article addresses proposal 1: "Are oxidative stress and ischemia significant causes of bladder damage leading to LUTD?" from the 2019 International Consultation on Incontinence-Research Society (ICI-RS) meeting. Bladder ischemia in animals and humans is briefly described, along with the proposed progression from ischemia to LUTD. Bladder ischemia is compared with ischemia of other organs, and the ongoing development of pelvic ischemia animal models is discussed. In addition, the distribution of blood within the bladder during filling and voiding and the challenges of quantification of blood flow in vivo are described. Furthermore, oxidative stress, including potential biomarkers and treatments, and challenges regarding antioxidant therapy for the treatment of LUTD are discussed. Finally, seven critical research questions and proposed studies to answer those questions were identified as priorities that would lead to major advances in the understanding and treatment of lower urinary tract symptoms (LUTS)/LUTD associated with pelvic ischemia and oxidative stress.


Subject(s)
Ischemia/physiopathology , Lower Urinary Tract Symptoms/physiopathology , Oxidative Stress/physiology , Urinary Bladder/blood supply , Urodynamics/physiology , Animals , Humans , Ischemia/metabolism , Lower Urinary Tract Symptoms/metabolism , Urinary Bladder/metabolism , Urinary Bladder/physiopathology , Urination
8.
Adv Exp Med Biol ; 1124: 121-147, 2019.
Article in English | MEDLINE | ID: mdl-31183825

ABSTRACT

The urinary bladder has two functions: to store urine, when it is relaxed and highly compliant; and void its contents, when intravesical pressure rises due to co-ordinated contraction of detrusor smooth muscle in the bladder wall. Superimposed on this description are two observations: (1) the normal, relaxed bladder develops small transient increases of intravesical pressure, mirrored by local bladder wall movements; (2) pathological, larger pressure variations (detrusor overactivity) can occur that may cause involuntary urine loss and/or detrusor overactivity. Characterisation of these spontaneous contractions is important to understand: how normal bladder compliance is maintained during filling; and the pathophysiology of detrusor overactivity. Consideration of how spontaneous contractions originate should include the structural complexity of the bladder wall. Detrusor smooth muscle layer is overlain by a mucosa, itself a complex structure of urothelium and a lamina propria containing sensory nerves, micro-vasculature, interstitial cells and diffuse muscular elements.Several theories, not mutually exclusive, have been advanced for the origin of spontaneous contractions. These include intrinsic rhythmicity of detrusor muscle; modulation by non-muscular pacemaking cells in the bladder wall; motor input to detrusor by autonomic nerves; regulation of detrusor muscle excitability and contractility by the adjacent mucosa and spontaneous contraction of elements of the lamina propria. This chapter will consider evidence for each theory in both normal and overactive bladder and how their significance may vary during ageing and development. Further understanding of these mechanisms may also identify novel drug targets to ameliorate the clinical consequences of large contractions associated with detrusor overactivity.


Subject(s)
Interstitial Cells of Cajal/physiology , Muscle Contraction , Muscle, Smooth/physiology , Urinary Bladder/physiology , Humans , Urinary Bladder/physiopathology , Urinary Bladder, Overactive/physiopathology
9.
J Physiol ; 597(6): 1427-1428, 2019 03.
Article in English | MEDLINE | ID: mdl-30578677
10.
PLoS One ; 13(3): e0193923, 2018.
Article in English | MEDLINE | ID: mdl-29513744

ABSTRACT

Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1µM); subsequent addition of PPADs (100µM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1µM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.


Subject(s)
Muscle, Smooth/radiation effects , Urinary Bladder/radiation effects , Adenosine Triphosphate/pharmacology , Animals , Atropine/pharmacology , Calcium Signaling , Carbachol/pharmacology , Dose-Response Relationship, Radiation , Guinea Pigs , In Vitro Techniques , Male , Mucous Membrane/drug effects , Mucous Membrane/physiology , Muscle Contraction/drug effects , Muscle Contraction/radiation effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Radiation Dosage , Urinary Bladder/drug effects
11.
Neurourol Urodyn ; 37(S4): S13-S19, 2018 06.
Article in English | MEDLINE | ID: mdl-29360173

ABSTRACT

INTRODUCTION: Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. METHODS: A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. RESULTS: The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. CONCLUSIONS: Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiopathology , Myocytes, Smooth Muscle/physiology , Urinary Bladder Diseases/physiopathology , Humans , Interstitial Cells of Cajal/physiology , Urothelium/physiopathology
12.
Oncotarget ; 8(57): 97331-97343, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29228614

ABSTRACT

Radiation therapy (RT) delivers tumour kill, directly and often via bystander mechanisms. Bladder toxicity is a dose limiting constraint in pelvic RT, manifested as radiation cystitis and urinary symptoms. We aimed to investigate the impact of radiation-induced bystander signaling on normal/cancer urothelial cells. Human urothelial cancer cells T24, HT1376 and normal urothelial cells HUC, SV-HUC were used. Cells were irradiated and studied directly, or conditioned medium from irradiated cells (CM) was transferred to naïve, cells. T24 or SV-HUC cells in the shielded half of irradiated flasks had increased numbers of DNA damage foci vs non-irradiated cells. A physical barrier blocked this response, indicating release of transmitters from irradiated cells. Clonogenic survival of shielded T24 or SV-HUC was also reduced; a physical barrier prevented this phenomenon. CM-transfer increased pro-apoptotic caspase-3 activity, increased cleaved caspase-3 and cleaved PARP expression and reduced survival protein XIAP expression. This effect was mimicked by ATP. ATP or CM evoked suramin-sensitive Ca2+-signals. Irradiation increased [ATP] in CM from T24. The CM-inhibitory effect on T24 clonogenic survival was blocked by apyrase, or mimicked by ATP. We conclude that radiation-induced bystander signaling enhances urothelial cancer cell killing via activation of purinergic pro-apoptotic pathways. This benefit is accompanied by normal urothelial damage indicating RT bladder toxicity is also bystander-mediated.

13.
Neurourol Urodyn ; 36(4): 863-868, 2017 04.
Article in English | MEDLINE | ID: mdl-28444701

ABSTRACT

AIMS: This article summarizes discussion at the International Consultation on Incontinence Research Society (ICI-RS) 2015 meeting of urine modification in the urinary tract by the urothelium. It considers the literature and proposes pertinent questions that need to be addressed to understand this phenomenon within a physiological context. METHODS: Following the ICI-RS meeting, publications in PubMed relating to urine modification in the renal pelvis, ureter, and bladder were reviewed. RESULTS: Historically, the urothelium has been simply considered as a passive, impermeable barrier, preventing contact between urine and the underlying cells. In addition to the ability of the umbrella cells to modify the surface area of the urothelium during bladder filling, the urothelium may also be involved in modifying urine composition. Several lines of evidence support the hypothesis that electrolytes and water can be reabsorbed by the urothelium and that this may have physiological relevance. Firstly, urothelial cells express several types of aquaporins and ion channels; the membrane expression of which is modulated by the extracellular concentration of ions including Na+ . Secondly, studies of urine composition in the renal pelvis and bladder demonstrate urine modification, indicating that water and/or electrolyte transport has occurred. Thirdly, hibernating mammals, with urothelial and bladder wall histology similar to non-hibernating mammals are known to produce and reabsorb urine daily, during long periods of hibernation. CONCLUSIONS: The phenomenon of urine modification by the urothelium may be physiologically important during normal bladder filling. Research should be focused on investigating how this may change in conditions of urinary dysfunction.


Subject(s)
Biological Transport/physiology , Electrolytes/metabolism , Urothelium/metabolism , Animals , Aquaporins/biosynthesis , Electrolytes/urine , Humans , Ion Channels/metabolism , Urinary Bladder/metabolism
14.
J Natl Cancer Inst ; 109(1)2017 01.
Article in English | MEDLINE | ID: mdl-27707838

ABSTRACT

Background: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. Methods: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. Results: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. Conclusions: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.


Subject(s)
Breast Neoplasms/immunology , DNA Damage/immunology , DNA/analysis , Immunity, Innate , Leukocytes, Mononuclear/physiology , Lymphocytes, Tumor-Infiltrating , Membrane Proteins/metabolism , B7-H1 Antigen/metabolism , Breast Neoplasms/genetics , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Chemotaxis/drug effects , Culture Media, Conditioned/pharmacology , Cytosol/chemistry , Female , Humans , Immunohistochemistry , Interferon Regulatory Factor-3/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase/genetics , Signal Transduction
15.
Prostate ; 77(3): 282-290, 2017 02.
Article in English | MEDLINE | ID: mdl-27753122

ABSTRACT

BACKGROUND: Calcium channel blockers (CCBs) may affect prostate cancer (PCa) growth by various mechanisms including those related to androgens. The fusion of the androgen-regulated gene TMPRSS2 and the oncogene ERG (TMPRSS2:ERG or T2E) is common in PCa, and prostate tumors that harbor the gene fusion are believed to represent a distinct disease subtype. We studied the association of CCB use with the risk of PCa, and molecular subtypes of PCa defined by T2E status. METHODS: Participants were residents of King County, Washington, recruited for population-based case-control studies (1993-1996 or 2002-2005). Tumor T2E status was determined by fluorescence in situ hybridization using tumor tissue specimens from radical prostatectomy. Detailed information on use of CCBs and other variables was obtained through in-person interviews. Binomial and polytomous logistic regression were used to generate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: The study included 1,747 PCa patients and 1,635 age-matched controls. A subset of 563 patients treated with radical prostatectomy had T2E status determined, of which 295 were T2E positive (52%). Use of CCBs (ever vs. never) was not associated with overall PCa risk. However, among European-American men, users had a reduced risk of higher-grade PCa (Gleason scores ≥7: adjusted OR = 0.64; 95% CI: 0.44-0.95). Further, use of CCBs was associated with a reduced risk of T2E positive PCa (adjusted OR = 0.38; 95% CI: 0.19-0.78), but was not associated with T2E negative PCa. CONCLUSIONS: This study found suggestive evidence that use of CCBs is associated with reduced relative risks for higher Gleason score and T2E positive PCa. Future studies of PCa etiology should consider etiologic heterogeneity as PCa subtypes may develop through different causal pathways. Prostate 77:282-290, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Calcium Channel Blockers/therapeutic use , Gene Fusion/genetics , Population Surveillance , Prostatic Neoplasms/genetics , Serine Endopeptidases/genetics , Aged , Calcium Channel Blockers/pharmacology , Case-Control Studies , Gene Fusion/drug effects , Humans , Male , Middle Aged , Population Surveillance/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Risk Factors , Serine Endopeptidases/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
16.
Neurourol Urodyn ; 36(4): 1052-1060, 2017 04.
Article in English | MEDLINE | ID: mdl-27494539

ABSTRACT

AIMS: To investigate the local, regulatory role of the mucosa on bladder strip contractility from normal and overactive bladders and to examine the effect of botulinum toxin A (BoNT-A). METHODS: Bladder strips from spontaneously hyperactive rat (SHR) or normal rats (Sprague Dawley, SD) were dissected for myography as intact or mucosa-free preparations. Spontaneous, neurogenic and agonist-evoked contractions were investigated. SHR strips were incubated in BoNT-A (3 h) to assess effects on contractility. RESULTS: Spontaneous contraction amplitude, force-integral or frequency were not significantly different in SHR mucosa-free strips compared with intacts. In contrast, spontaneous contraction amplitude and force-integral were smaller in SD mucosa-free strips than in intacts; frequency was not affected by the mucosa. Frequency of spontaneous contractions in SHR strips was significantly greater than in SD strips. Neurogenic contractions in mucosa-free SHR and SD strips at higher frequencies were smaller than in intact strips. The mucosa did not affect carbachol-evoked contractions in intact versus mucosa-free strips from SHR or SD bladders. BoNT-A reduced spontaneous contractions in SHR intact strips; this trend was also observed in mucosa-free strips but was not significant. Neurogenic and carbachol-evoked contractions were reduced by BoNT-A in mucosa-free but not intact strips. Depolarisation-induced contractions were smaller in BoNT-A-treated mucosa-free strips. CONCLUSIONS: The mucosal layer positively modulates spontaneous contractions in strips from normal SD but not overactive SHR bladder strips. The novel finding of BoNT-A reduction of contractions in SHR mucosa-free strips indicates actions on the detrusor, independent of its classical action on neuronal SNARE complexes.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Muscle Contraction/drug effects , Neuromuscular Agents/pharmacology , Urinary Bladder, Overactive/drug therapy , Urinary Bladder/drug effects , Animals , Disease Models, Animal , Male , Muscle, Smooth/drug effects , Rats , Rats, Sprague-Dawley
17.
Eur Biophys J ; 45(7): 621-633, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27342111

ABSTRACT

The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, ß and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.


Subject(s)
Calcium Channels/metabolism , Drug Repositioning/methods , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Calcium Channels/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/genetics , Neoplasms/pathology
18.
Oncotarget ; 7(31): 49042-49064, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27119498

ABSTRACT

Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.


Subject(s)
Adenocarcinoma/pathology , Cholecalciferol/pharmacology , Colon/pathology , Colorectal Neoplasms/pathology , Adenocarcinoma/drug therapy , Animals , Caco-2 Cells , Cell Culture Techniques , Cell Transformation, Neoplastic , Cohort Studies , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Mitosis , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prognosis , Protein Kinase C/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction , Transfection , cdc42 GTP-Binding Protein/metabolism
19.
J Neurosci ; 35(5): 2146-60, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653370

ABSTRACT

Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Spinal Cord Injuries/metabolism , Urinary Bladder, Neurogenic/metabolism , Animals , Axons/metabolism , Axons/physiology , Brain-Derived Neurotrophic Factor/genetics , Cells, Cultured , Female , Nerve Regeneration , Rats , Rats, Wistar , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Dorsal Horn/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/physiopathology
20.
Neurourol Urodyn ; 33(1): 9-16, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23847015

ABSTRACT

The bladder mucosa consists of the urothelium, basement membrane, and lamina propria (LP). Although the urothelium has been given much attention, it may be regarded as one part of a signaling system involving another equally important component of the bladder mucosa, namely, the LP. The LP lies between the basement membrane of the mucosa and the detrusor muscle and is composed of an extracellular matrix containing several types of cells, including fibroblasts, adipocytes, interstitial cells, and afferent and efferent nerve endings. In addition, the LP contains a rich vascular network, lymphatic vessels, elastic fibers, and smooth muscle fascicles (muscularis mucosae). The roles of the LP and its components in bladder function have not been definitively established, though it has been suggested to be the capacitance layer of the bladder, determining bladder compliance and enabling adaptive changes to increasing volumes. However, the bladder LP may also serve as a communication center, with an important integrative role in signal transduction to the central nervous system (nociception, mechanosensation). The LP may also, by means of its different components, make it possible for the urothelium to transmit information to other components of the bladder wall, contributing to activation of the detrusor muscle. In addition, the LP may serve as a source for production of factors influencing the growth of both the overlying urothelium and the underlying detrusor muscle.


Subject(s)
Mucous Membrane , Urinary Bladder , Animals , Extracellular Matrix/physiology , Humans , Interstitial Cells of Cajal/physiology , Lymphatic Vessels/physiology , Mucous Membrane/blood supply , Mucous Membrane/cytology , Mucous Membrane/innervation , Myofibroblasts/physiology , Signal Transduction , Urinary Bladder/blood supply , Urinary Bladder/cytology , Urinary Bladder/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...