Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychopharmacol ; 38(2): 188-199, 2024 02.
Article in English | MEDLINE | ID: mdl-38293836

ABSTRACT

BACKGROUND: The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS: To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS: Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS: Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.


Subject(s)
Analgesics, Opioid , Dorsal Raphe Nucleus , Humans , Rats , Mice , Animals , Serotonin/physiology , Depression/drug therapy , Rats, Sprague-Dawley , gamma-Aminobutyric Acid , Serotonergic Neurons , Morphine/pharmacology , Anxiety
2.
Physiol Behav ; 271: 114322, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37573960

ABSTRACT

Alcohol use disorder (AUD) is a debilitating psychiatric disorder characterized by drinking despite negative social and biological consequences. AUDs make up 71% of substance use disorders, with relapse rates as high as 80%. Current treatments stem from data conducted largely in males and fail to target the psychological distress motivating drinking in stress-vulnerable and at-risk populations. Here we employed a rat model and hypothesized that early life stress would reveal sex differences in ethanol intake and drinking despite negative consequences in adulthood. Rats were group housed or isolated postweaning to evaluate sex and stress effects on ethanol consumption in homecage drinking, self-administration (SA), and punished SA (drinking despite negative consequences) in adulthood. Stressed rats showed elevated homecage ethanol intake, an effect more pronounced in females. During SA, males were more sensitive to stress-induced elevations of drinking over time, but females drank more overall. Stressed rats, regardless of sex, responded more for ethanol than their non-stressed counterparts. Stressed females showed greater resistance to punishment-suppressed SA than stressed males, indicating a more stress-resistant drinking phenotype. Results support our hypothesis that adolescent social isolation stress enhances adult ethanol intake in a sex- and model-dependent manner with females being especially sensitive to early life stress-induced elevations in ethanol intake and punished SA in adulthood. Our findings echo the clinical literature which indicates that stress-vulnerable populations are more likely to 'self-medicate' with substances. Elucidating a potential mechanism that underlies why vulnerable populations 'self-medicate' with alcohol can lead towards developing catered pharmacotherapeutics that could reduce punishment-resistant drinking and relapse.

3.
Drug Alcohol Depend ; 230: 109204, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34871976

ABSTRACT

Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point. Daily administration of AMD 3100, a CXCR4 antagonist (10 mg/kg), or maraviroc, a CCR5 antagonist (2.5 mg/kg), during MDPV treatment inhibited the MDPV-induced increase in time spent in the open compartment. Neither antagonist affected the MDPV-induced reduction in time spent in the open compartment at the 72-h post-binge time point. Cocaine, administered in the same paradigm as MDPV, did not increase time spent in the open compartment 24-h post-binge, suggesting specificity to MDPV. The present results identify a surprising anxiolytic-like effect of MDPV 24 h after cessation of repeated exposure that is sensitive to chemokine CXCR4 and CCR5 receptor activity.


Subject(s)
Anti-Anxiety Agents , Receptors, CCR5 , Alkaloids , Animals , Anti-Anxiety Agents/pharmacology , Benzodioxoles , CCR5 Receptor Antagonists/pharmacology , Chemokines , Pyrrolidines , Rats , Receptors, CXCR4 , Synthetic Cathinone
4.
Psychopharmacology (Berl) ; 238(1): 29-40, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33231727

ABSTRACT

RATIONALE: The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous data show that stressors can inhibit 5-HT neuronal activity and release by stimulating the release of the stress neurohormone corticotropin-releasing factor (CRF) within the serotonergic dorsal raphe nucleus (DRN). The inhibitory effects of CRF on 5-HT DRN neurons are indirect, mediated by CRF-R1 receptors located on GABAergic afferents. OBJECTIVES: We tested the hypothesis that DRN CRF-R1 receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). We also examined the role of this circuitry in stress-induced negative affective state with 22-kHz distress ultrasonic vocalizations (USVs), which are naturally emitted by rats in response to environmental challenges such as pain, stress, and drug withdrawal. METHODS: First, we tested if activation of CRF-R1 receptors in the DRN with the CRF-R1-preferring agonist ovine CRF (oCRF) would reinstate morphine CPP and then if blockade of CRF-R1 receptors in the DRN with the CRF-R1 antagonist NBI 35965 would attenuate swim stress-induced reinstatement of morphine CPP. Second, we tested if intra-DRN pretreatment with NBI 35965 would attenuate foot shock stress-induced 22-kHz USVs. RESULTS: Intra-DRN injection of oCRF reinstated morphine CPP, while intra-DRN injection of NBI 35965 attenuated swim stress-induced reinstatement. Moreover, intra-DRN pretreatment with NBI 35965 significantly reduced 22-kHz distress calls induced by foot shock. CONCLUSIONS: These data provide evidence that stress-induced negative affective state is mediated by DRN CRF-R1 receptors and may contribute to reinstatement of morphine CPP.


Subject(s)
Analgesics, Opioid/pharmacology , Corticotropin-Releasing Hormone/metabolism , Dorsal Raphe Nucleus/drug effects , Morphine/pharmacology , Motivation/drug effects , Serotonin/metabolism , Stress, Psychological/psychology , Analgesics, Opioid/administration & dosage , Animals , Behavior, Animal/drug effects , Conditioning, Psychological/drug effects , Corticotropin-Releasing Hormone/administration & dosage , Corticotropin-Releasing Hormone/agonists , Corticotropin-Releasing Hormone/analogs & derivatives , Dorsal Raphe Nucleus/metabolism , Extinction, Psychological/drug effects , Male , Morphine/administration & dosage , Morphine Dependence/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Reinforcement, Psychology , Sheep , Stress, Psychological/metabolism , Substance Withdrawal Syndrome/metabolism
5.
FASEB J ; 33(4): 5045-5057, 2019 04.
Article in English | MEDLINE | ID: mdl-30615497

ABSTRACT

Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt-/- mice fed a high-fat diet are protected from obesity and whole-body insulin resistance. However, Pemt-/- mice develop severe nonalcoholic steatohepatitis (NASH). Because NASH is often associated with hepatic insulin resistance, we investigated whether the increased insulin sensitivity in Pemt-/- mice was restricted to nonhepatic tissues or whether the liver was also insulin sensitive. Strikingly, the livers of Pemt-/- mice compared with those of Pemt+/+ mice were not insulin resistant, despite elevated levels of hepatic triacylglycerols and diacylglycerols, as well as increased hepatic inflammation and fibrosis. Endogenous glucose production was lower in Pemt-/- mice under both basal and hyperinsulinemic conditions. Experiments in primary hepatocytes and hepatoma cells revealed improved insulin signaling in the absence of PEMT, which was not due to changes in diacylglycerols, ceramides, or gangliosides. On the other hand, the phospholipid composition in hepatocytes seems critically important for insulin signaling such that lowering the PC:phosphatidylethanolamine (PE) ratio improves insulin signaling. Thus, treatments to reduce the PC:PE ratio in liver may protect against the development of hepatic insulin resistance.-Van der Veen, J. N., Lingrell, S., McCloskey, N., LeBlond, N. D., Galleguillos, D., Zhao, Y. Y., Curtis, J. M., Sipione, S., Fullerton, M. D., Vance, D. E., Jacobs, R. L. A role for phosphatidylcholine and phosphatidylethanolamine in hepatic insulin signaling.


Subject(s)
Insulin/metabolism , Liver/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Animals , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Phosphatidylethanolamine N-Methyltransferase/metabolism , Signal Transduction/physiology
6.
mSphere ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28744479

ABSTRACT

Antibiotic resistance evolves rapidly in response to drug selection, but it can also persist at appreciable levels even after the removal of the antibiotic. This suggests that many resistant strains can both be resistant and have high fitness in the absence of antibiotics. To explore the conditions under which high-fitness, resistant strains evolve and the genetic changes responsible, we used a combination of experimental evolution and whole-genome sequencing to track the acquisition of ciprofloxacin resistance in the opportunistic pathogen Pseudomonas aeruginosa under conditions of constant and fluctuating antibiotic delivery patterns. We found that high-fitness, resistant strains evolved readily under fluctuating but not constant antibiotic conditions and that their evolution was underlain by a trade-off between resistance and fitness. Whole-genome sequencing of evolved isolates revealed that resistance was gained through mutations in known resistance genes and that second-site mutations generally compensated for costs associated with resistance in the fluctuating treatment, leading to the evolution of cost-free resistance. Our results suggest that current therapies involving intermittent administration of antibiotics are contributing to the maintenance of antibiotic resistance at high levels in clinical settings. IMPORTANCE Antibiotic resistance is a global problem that greatly impacts human health. How resistance persists, even in the absence of antibiotic treatment, is thus a public health problem of utmost importance. In this study, we explored the antibiotic treatment conditions under which cost-free resistance arises, using experimental evolution of the bacterium Pseudomonas aeruginosa and the quinolone antibiotic ciprofloxacin. We found that intermittent antibiotic treatment led to the evolution of cost-free resistance and demonstrate that compensatory evolution is the mechanism responsible for cost-free resistance. Our results suggest that discontinuous administration of antibiotic may be contributing to the high levels of antibiotic resistance currently found worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...