Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Lancet Reg Health Southeast Asia ; 14: 100205, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37193348

ABSTRACT

Background: The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods: A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings: This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation: RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding: UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.

2.
IJID Reg ; 6: 171-176, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915800

ABSTRACT

Background: Arboviruses are endemic in Uganda; however, little is known about their epidemiology, seasonality and spatiotemporal distribution. Our study sought to provide information on arbovirus outbreaks from acute clinical presentations. Methods: Immunoglobulin M (IgM) and confirmatory Plaque Reduction Neutralisation Test (PRNT) results for arbovirus diagnosis of samples collected from patients attending sentinel sites from 2016-19 were analysed retrospectively. Demographic data were analysed with SaTScan and SPSS software to determine the epidemiology and spatiotemporal distribution of arboviruses. Results: Arbovirus activity peaked consistently during March-May rainy seasons. Overall, arbovirus seroprevalence was 9.5%. Of 137 IgM positives, 52.6% were confirmed by PRNT, of which 73.6% cases were observed in central Uganda with Yellow Fever Virus had the highest prevalence (27.8%). The 5-14 age group were four times more likely to be infected with an arbovirus p=0.003, 4.1 (95% CI 1.3-12.3). Significant arboviral activity was observed among outdoor workers(p=0.05) . Spatiotemporal analysis indicated arboviral activity in 23 of the 85 districts analysed.. Interpretation: Our study shows that arbovirus activity peaks during the March-May rainy season and highlights the need for YFV mass vaccination to reduce the clinical burden of arboviruses transmitted within the region.

3.
J Med Virol ; 95(1): e28178, 2023 01.
Article in English | MEDLINE | ID: mdl-36168235

ABSTRACT

BACKGROUND AND AIMS: The newly developed direct-acting antivirals have revolutionized the treatment of chronic hepatitis C virus (HCV), with cure rates as high as 98% in some cohorts. Although genome sequencing has demonstrated that some subtypes of HCV naturally harbor drug resistance associated substitutions (RAS), these are often overlooked as "rarities." Furthermore, commercial subtyping assays and associated epidemiological findings are skewed towards Western cohorts and whole-genome sequencing can be problematic to deploy without significant infrastructure and training support. We thus aimed to develop a simple, robust and accurate HCV subtyping pipeline, to optimize and streamline molecular detection and sequence-based typing of diverse RAS-containing subtypes. METHODS: HCV serum derived from 146 individuals, whose likely source of infection was from sub-Saharan Africa (SSA) was investigated with a novel panel of single round polymerase chain reaction (PCR) assays targeting NS5B and NS5A genomic regions. Virus subtype assignments were determined by pairwise-distance analysis and compared to both diagnostic laboratory assignments and free-to-use online typing tools. RESULTS: Partial NS5A and NS5B sequences were respectively obtained from 131 to 135 HCV-positive patients born in 19 different countries from SSA but attending clinics in the UK. We determined that routine clinical diagnostic methods incorrectly subtyped 59.0% of samples, with a further 6.8% incorrectly genotyped. Of five commonly used online tools, Geno2Pheno performed most effectively in determining a subtype in agreement with pairwise distance analysis. CONCLUSION: This study provides a simple low-cost pathway to accurately subtype in SSA, guide regional therapeutic choice and assist global surveillance and elimination initiatives.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Viral Nonstructural Proteins/genetics , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepacivirus/genetics , Genotype , Africa South of the Sahara/epidemiology , United Kingdom/epidemiology , Drug Resistance, Viral/genetics
4.
Access Microbiol ; 4(3): 000326, 2022.
Article in English | MEDLINE | ID: mdl-35693474

ABSTRACT

Hepatitis C virus (HCV) is responsible for more than 180 million infections worldwide, and about 80 % of infections are reported in Low and Middle-income countries (LMICs). Therapy is based on the administration of interferon (INF), ribavirin (RBV) or more recently Direct-Acting Antivirals (DAAs). However, amino acid substitutions associated with resistance (RAS) have been extensively described and can contribute to treatment failure, and diagnosis of RAS requires considerable infrastructure, not always locally available. Dried serum spots (DSS) sampling is an alternative specimen collection method, which embeds drops of serum onto filter paper to be transported by posting to a centralized laboratory. Here, we assessed feasibility of genotypic analysis of HCV from DSS in a cohort of 80 patients from São Paulo state Brazil. HCV RNA was detected on DSS specimens in 83 % of samples of HCV infected patients. HCV genotypes 1a, 1b, 2a, 2c and 3a were determined using the sequence of the palm domain of NS5B region, and RAS C316N/Y, Q309R and V321I were identified in HCV 1b samples. Concerning therapy outcome, 75 % of the patients who used INF +RBV as a previous protocol of treatment did not respond to DAAs, and 25 % were end-of-treatment responders. It suggests that therapy with INF plus RBV may contribute for non-response to a second therapeutic protocol with DAAs. One patient that presented RAS (V321I) was classified as non-responder, and combination of RAS C316N and Q309R does not necessarily imply in resistance to treatment in this cohort of patients. Data presented herein highlights the relevance of studying circulating variants for a better understanding of HCV variability and resistance to the therapy. Furthermore, the feasibility of carrying out genotyping and RAS phenotyping analysis by using DSS card for the potential of informing future treatment interventions could be relevant to overcome the limitations of processing samples in several location worldwide, especially in LMICs.

5.
Influenza Other Respir Viruses ; 16(6): 1122-1132, 2022 11.
Article in English | MEDLINE | ID: mdl-35672928

ABSTRACT

BACKGROUND: Human Parainfluenza viruses (HPIV) comprise of four members of the genetically distinct genera of Respirovirus (HPIV1&3) and Orthorubulavirus (HPIV2&4), causing significant upper and lower respiratory tract infections worldwide, particularly in children. However, despite frequent molecular diagnosis, they are frequently considered collectively or with HPIV4 overlooked entirely. We therefore investigated clinical and viral epidemiological distinctions of the relatively less prevalent Orthorubulaviruses HPIV2&4 at a regional UK hospital across four autumn/winter epidemic seasons. METHODS: A retrospective audit of clinical features of all HPIV2 or HPIV4 RT-PCR-positive patients, diagnosed between 1st September 2013 and 12th April 2017 was undertaken, alongside sequencing of viral genome fragments in a representative subset of samples. RESULTS: Infection was observed across all age groups, but predominantly in children under nine and adults over 40, with almost twice as many HPIV4 as HPIV2 cases. Fever, abnormal haematology, elevated C-reactive protein and hospital admission were more frequently seen in HPIV2 than HPIV4 infection. Each of the four seasonal peaks of either HPIV2, HPIV4 or both, closely matched that of RSV, occurring in November and December and preceding that of Influenza A. A subset of viruses were partially sequenced, indicating co-circulation of multiple subtypes of both HPIV2&4, but with little variation between each epidemic season or from limited global reference sequences. CONCLUSIONS: Despite being closest known genetic relatives, our data indicates a potential difference in associated disease between HPIV2 and HPIV4, with more hospitalisation seen in HPIV2 mono-infected individuals, but a greater overall number of HPIV4 cases.


Subject(s)
Paramyxoviridae Infections , Respiratory Tract Infections , Adult , C-Reactive Protein , Child , Genomics , Humans , Molecular Epidemiology , Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 2, Human/genetics , Parainfluenza Virus 3, Human/genetics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Retrospective Studies , United Kingdom/epidemiology
6.
Microb Genom ; 8(5)2022 05.
Article in English | MEDLINE | ID: mdl-35532121

ABSTRACT

Enterovirus D68 (EV-D68) has recently been identified in biennial epidemics coinciding with diagnoses of non-polio acute flaccid paralysis/myelitis (AFP/AFM). We investigated the prevalence, genetic relatedness and associated clinical features of EV-D68 in 193 EV-positive samples from 193 patients in late 2018, UK. EV-D68 was detected in 83 (58 %) of 143 confirmed EV-positive samples. Sequencing and phylogenetic analysis revealed extensive genetic diversity, split between subclades B3 (n=50) and D1 (n=33), suggesting epidemiologically unrelated infections. B3 predominated in children and younger adults, and D1 in older adults and the elderly (P=0.0009). Clinical presentation indicated causation or exacerbation of respiratory distress in 91.4 % of EV-D68-positive individuals, principally cough (75.3 %), shortness of breath (56.8 %), coryza (48.1 %), wheeze (46.9 %), supplemental oxygen required (46.9 %) and fever (38.9 %). Two cases of AFM were observed, one with EV-D68 detectable in the cerebrospinal fluid, but otherwise neurological symptoms were rarely reported (n=4). Both AFM cases and all additional instances of intensive care unit (ICU) admission (n=5) were seen in patients infected with EV-D68 subclade B3. However, due to the infrequency of severe infection in our cohort, statistical significance could not be assessed.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Epidemics , Aged , Central Nervous System Viral Diseases , Child , Enterovirus D, Human/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Genetic Variation , Humans , Myelitis , Neuromuscular Diseases , Phylogeny , United Kingdom/epidemiology
7.
J Gen Virol ; 103(3)2022 03.
Article in English | MEDLINE | ID: mdl-35230930

ABSTRACT

Hepatitis C virus (HCV) infection affects more than 71 million people worldwide. The disease slowly progresses to chronic, long-term liver injury which leads to hepatocellular carcinoma (HCC) in 5 % of infections. The alternative reading frame protein (ARFP/core+1) is encoded by a sequence overlapping the HCV core gene in the +1 reading frame. Its role in hepatitis C pathogenesis and the viral life cycle is unclear, although some observers have related its production to disease progression and the development of HCC. The aim of this study was to determine whether ARFP is immunogenic in patients with chronic HCV genotype 3 infection and to assess whether sero-reactivity is associated with disease progression, particularly to HCC. Immunogenic epitopes within the protein were predicted by a bioinformatics tool, and three -20 aa length-peptides (ARFP-P1, ARFP-P2 and ARFP-P3) were synthesized and used in an avidin-biotin ARFP/core+1 peptide ELISA. Serum samples from 50 patients with chronic HCV genotype 3 infection, 50 genotype-1 patients, 50 HBV patients and 110 healthy controls were tested. Sero-reactivity to the ARFP peptides was also tested and compared in 114 chronic HCV genotype-3 patients subdivided on the basis of disease severity into non-cirrhotic, cirrhotic and HCC groups. Chronic HCV genotype-3 patients showed noticeable rates of reactivity to ARFP and core peptides. Seropositivity rates were 58% for ARFP-P1, 47 % for ARFP-P2, 5.9 % for ARFP-P3 and 100 % for C22 peptides. There was no significant difference between these seroreactivities between HCV genotype-3 patients with HCC, and HCV genotype-3 patients with and without liver cirrhosis. Patients with chronic HCV genotype-3 infection frequently produce antibodies against ARFP/core+1 protein. ARFP peptide reactivity was not associated with disease severity in patients with HCV genotype-3. These results support the conclusion that ARFP/core+1 is produced during HCV infection, but they do not confirm that antibodies to ARFP can indicate HCV disease progression.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Disease Progression , Genotype , Hepacivirus , Hepatitis C Antibodies , Humans , Peptides/genetics , Reading Frames , Viral Core Proteins/metabolism
8.
J Infect Dis ; 226(6): 995-1004, 2022 09 21.
Article in English | MEDLINE | ID: mdl-33668068

ABSTRACT

BACKGROUND: Chronic hepatitis C virus (HCV) infection affects 71 million individuals, mostly residing in low- and middle-income countries (LMICs). Direct-acting antivirals (DAAs) give high rates of sustained virological response (SVR) in high-income countries where a restricted range of HCV genotypes/subtypes circulate. METHODS: We studied United Kingdom-resident patients born in Africa to examine DAA effectiveness in LMICs where there is far greater breadth of HCV genotypes/subtypes. Viral genome sequences were determined from 233 patients. RESULTS: Full-length viral genomic sequences for 26 known subtypes and 5 previously unidentified isolates covering 5 HCV genotypes were determined. From 149 patients who received DAA treatment/retreatment, the overall SVR was 93%. Treatment failure was associated primarily with 2 subtypes, gt1l and gt4r, using sofosbuvir/ledipasvir. These subtypes contain natural resistance-associated variants that likely contribute to poor efficacy with this drug combination. Treatment failure was also significantly associated with hepatocellular carcinoma. CONCLUSIONS: DAA combinations give high SVR rates despite the high HCV diversity across the African continent except for subtypes gt1l and gt4r, which respond poorly to sofosbuvir/ledipasvir. These subtypes are widely distributed across Western, Central, and Eastern Africa. Thus, in circumstances where accurate genotyping is absent, ledipasvir and its generic compounds should not be considered as a recommended treatment option.


Subject(s)
Antiviral Agents , Hepatitis C, Chronic , Antiviral Agents/therapeutic use , Benzimidazoles , Drug Combinations , Drug Therapy, Combination , Fluorenes , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Humans , Retreatment , Sofosbuvir/therapeutic use , Sustained Virologic Response
9.
J Infect Dis ; 225(1): 10-18, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34555152

ABSTRACT

Nosocomial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have severely affected bed capacity and patient flow. We utilized whole-genome sequencing (WGS) to identify outbreaks and focus infection control resources and intervention during the United Kingdom's second pandemic wave in late 2020. Phylogenetic analysis of WGS and epidemiological data pinpointed an initial transmission event to an admission ward, with immediate prior community infection linkage documented. High incidence of asymptomatic staff infection with genetically identical viral sequences was also observed, which may have contributed to the propagation of the outbreak. WGS allowed timely nosocomial transmission intervention measures, including admissions ward point-of-care testing and introduction of portable HEPA14 filters. Conversely, WGS excluded nosocomial transmission in 2 instances with temporospatial linkage, conserving time and resources. In summary, WGS significantly enhanced understanding of SARS-CoV-2 clusters in a hospital setting, both identifying high-risk areas and conversely validating existing control measures in other units, maintaining clinical service overall.


Subject(s)
COVID-19 , Cross Infection , Disease Outbreaks/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , Whole Genome Sequencing , Asymptomatic Infections , Cross Infection/epidemiology , Delivery of Health Care , Health Personnel , Humans , Personal Protective Equipment , Phylogeny , SARS-CoV-2
10.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34499027

ABSTRACT

Introduction. Zika virus (ZIKV) emerged as a public health concern on the American continent during late 2015. As the number of infected grew so did the concerns about its capability to cause long-term damage especially with the appearance of the congenital Zika syndrome (CZS). Proteins from the TAM family of receptor tyrosine kinases (RTKs) were proposed as the cellular receptors, however, due to the ability of the virus to infect a variety of cell lines different strategies to elucidate the tropism of the virus should be investigated.Hypothesis. Pseudotyping is a powerful tool to interrogate the ability of the glycoprotein (GP) to permit entry of viruses.Aim. We aimed to establish a highly tractable pseudotype model using lenti- and retro-viral backbones to investigate the entry pathway of ZIKV.Methodology. We used different glycoprotein constructs and different lenti- or retro-viral backbones, in a matrix of ratios to investigate production of proteins and functional pseudotypes.Results. Varying the ratio of backbone and glycoprotein plasmids did not yield infectious pseudotypes. Moreover, the supplementation of the ZIKV protease or the substitution of the backbone had no positive impact on the infectivity. We showed production of the proteins in producer cells implying the lack of infectious pseudotypes is due to a lack of successful glycoprotein incorporation, rather than lack of protein production.Conclusion. In line with other reports, we were unable to successfully produce infectious pseudotypes using the variety of methods described. Other strategies may be more suitable in the development of an efficient pseudotype model for ZIKV and other flaviviruses.


Subject(s)
Glycoproteins/genetics , Viral Proteins/genetics , Virology/methods , Zika Virus Infection/virology , Zika Virus/isolation & purification , Glycoproteins/metabolism , Humans , Viral Proteins/metabolism , Virus Internalization , Zika Virus/classification , Zika Virus/genetics , Zika Virus/physiology
11.
Biosensors (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356709

ABSTRACT

Enteroviruses are ubiquitous mammalian pathogens that can produce mild to life-threatening disease. We developed a multimodal, rapid, accurate and economical point-of-care biosensor that can detect nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and oligonucleotides to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral nucleic acid sequence (23 bases), which was identified through in silico screening. Oligonucleotides were designed to demonstrate specific complementarity towards the target enteroviral nucleic acid to produce aggregated gold-oligonucleotide nanoconstructs. The conserved target enteroviral nucleic acid sequence (≥1 × 10-7 M, ≥1.4 × 10-14 g/mL) initiates gold-oligonucleotide nanoconstruct disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow assays that utilise gold-oligonucleotide nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (<60 s), and could be interpreted with a bespoke software and hardware electronic interface. We anticipate that our methodology will translate in silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave the way forward in the clinical evaluation of disease and complement existing strategies to overcome antimicrobial resistance.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nucleic Acids , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nucleic Acid Hybridization , Oligonucleotides
12.
J Gen Virol ; 102(6)2021 06.
Article in English | MEDLINE | ID: mdl-34130773

ABSTRACT

In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Mass Screening/methods , Middle Aged , Phylogeny , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/genetics , United Kingdom/epidemiology
13.
J Med Microbiol ; 70(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33734960

ABSTRACT

Introduction. The COVID-19 pandemic, which began in 2020 is testing economic resilience and surge capacity of healthcare providers worldwide. At the time of writing, positive detection of the SARS-CoV-2 virus remains the only method for diagnosing COVID-19 infection. Rapid upscaling of national SARS-CoV-2 genome testing presented challenges: (1) Unpredictable supply chains of reagents and kits for virus inactivation, RNA extraction and PCR-detection of viral genomes. (2) Rapid time to result of <24 h is required in order to facilitate timely infection control measures.Hypothesis. Extraction-free sample processing would impact commercially available SARS-CoV-2 genome detection methods.Aim. We evaluated whether alternative commercially available kits provided sensitivity and accuracy of SARS-CoV-2 genome detection comparable to those used by regional National Healthcare Services (NHS).Methodology. We tested several detection methods and tested whether detection was altered by heat inactivation, an approach for rapid one-step viral inactivation and RNA extraction without chemicals or kits.Results. Using purified RNA, we found the CerTest VIASURE kit to be comparable to the Altona RealStar system currently in use, and further showed that both diagnostic kits performed similarly in the BioRad CFX96 and Roche LightCycler 480 II machines. Additionally, both kits were comparable to a third alternative using a combination of Quantabio qScript one-step Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) mix and Centre for Disease Control and Prevention (CDC)-accredited N1 and N2 primer/probes when looking specifically at borderline samples. Importantly, when using the kits in an extraction-free protocol, following heat inactivation, we saw differing results, with the combined Quantabio-CDC assay showing superior accuracy and sensitivity. In particular, detection using the CDC N2 probe following the extraction-free protocol was highly correlated to results generated with the same probe following RNA extraction and reported clinically (n=127; R2=0.9259).Conclusion. Our results demonstrate that sample treatment can greatly affect the downstream performance of SARS-CoV-2 diagnostic kits, with varying impact depending on the kit. We also showed that one-step heat-inactivation methods could reduce time from swab receipt to outcome of test result. Combined, these findings present alternatives to the protocols in use and can serve to alleviate any arising supply-chain issues at different points in the workflow, whilst accelerating testing, and reducing cost and environmental impact.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Culture Media , Hot Temperature , Humans , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , Virus Inactivation
14.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: mdl-33148654

ABSTRACT

Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.


Subject(s)
Hepacivirus , Hepatitis C , Animals , Hepacivirus/genetics , Mice , Mice, Transgenic , Virus Internalization
15.
J Clin Virol ; 132: 104646, 2020 11.
Article in English | MEDLINE | ID: mdl-32979770

ABSTRACT

BACKGROUND: Human enteroviruses (EV) are the leading cause of viral meningitis. EV genotyping is predominantly performed through amplification and sequencing of viral capsid protein-1 (VP1), frequently by national reference laboratories (NRLs). OBJECTIVE: To determine the frequency of genotyping failure in our NRL-submitted samples and apply a superior alternative assay to resolve untyped specimens. STUDY DESIGN: We initially audited genotyping data received for a cohort of patients in the East Midlands, UK by the NRL between 2013 and 2017, then identified an alternative RT-PCR typing method by literature review and evaluated primers from both assays in silico against comprehensive publicly available genomic data. The alternative assay was further optimised and applied to archived nucleic acids from previously untypable samples. RESULTS: Genotyping data showed a significant increase in untypable EV strains through the study period (p = 0.0073). Typing failure appeared unrelated to sample type or viral load. In silico analyses of 2,201 EV genomes showed high levels of mismatch between reference assay primers and clinically significant EV-species, in contrast to a selected alternative semi-nested RT-PCR VP1-typing assay. This alternative assay, with minor modifications, successfully genotyped 23 of 24 previously untypable yet viable archived specimens (EV-A, n = 4; EV-B, n = 19). Phylogenetic analyses identified no predominant strain within NRL untypable isolates, suggesting sub-optimal reference assay sensitivity across EV species, in agreement with in silico analyses. CONCLUSION: This modified highly sensitive RT-PCR assay presents a suitable alternative to the current English national reference VP1-typing assay and is recommended in other settings experiencing typing failure.


Subject(s)
Enterovirus Infections , Enterovirus , Enterovirus/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Humans , Laboratories , Phylogeny , United Kingdom
16.
J Clin Virol ; 129: 104453, 2020 08.
Article in English | MEDLINE | ID: mdl-32534437

ABSTRACT

BACKGROUND: Since its first isolation in 2005, Human Bocavirus (HBoV) has been repeatedly associated with acute respiratory tract infections, although its role in pathogenicity remains unclear due to high co-infection rates. OBJECTIVES: To assess HBoV prevalence and associated disease in a cohort of respiratory patients in the East Midlands, UK between 2015 and 2019. STUDY DESIGN: We initially investigated the undiagnosed burden of HBoV in a retrospective paediatric cohort sampled between 2015 and 2017 using an in-house PCR assay. HBoV was subsequently incorporated into the standard respiratory diagnostic pathway and we audited a calendar year of HBoV positive results between 2018 and 2019. RESULTS: Our retrospective PCR screening of previously routine diagnostic-negative samples from juvenile patients identified a 9% (n = 30) prevalence of HBoV type 1. These apparent HBoV1 mono-infections were frequently associated with respiratory tract symptoms, often severe requiring ventilation, oxygen and steroid intervention with 31% (n = 9) of individuals requiring intensive care. When HBoV screening was subsequently adopted into the routine respiratory diagnostic pathway, year-round infections were observed in both children and adults peaking in February. 185 of 9098 (2.03%) individuals were found to be HBoV positive with children aged 12-24 months the principally infected group. However, HBoV infection was also observed in patients aged over 60, predominantly as a mono-infection. 23% of the 185 unique patients were HBoV monoinfected and persistent low-level DNA positivity was observed in 15 individuals up to 6-months after initial presentation. CONCLUSION: HBoV1 is a prevalent respiratory infection in the UK capable of causing serious monoinfections.


Subject(s)
Human bocavirus , Parvoviridae Infections , Respiratory Tract Infections , Adult , Child , Escherichia coli , Humans , Infant , Retrospective Studies , United Kingdom
17.
J Clin Virol ; 129: 104483, 2020 08.
Article in English | MEDLINE | ID: mdl-32544862

ABSTRACT

BACKGROUND: Effective drug regimens for the treatment of hepatitis B virus (HBV) infections are essential to achieve the World Health Organisation commitment to eliminate viral hepatitis by 2030. Lamivudine (3TC) is widely used in countries with high levels of chronic HBV, however resistance has been shown to occur in up to 50 % of individuals receiving continuous monotherapy for 4 years. Telbivudine (LdT) is now more commonly used in place of lamivudine but is ineffective against 3TC-resistant HBV. Genotyping and identification of resistanceassociated substitutions (RAS) is not practical in many locations. OBJECTIVES: A novel assay was designed to enable HBV genotyping and characterisation of resistance mutations directly from serum samples stored on filter paper, using Sanger and MinION sequencing. STUDY DESIGN: The assay was applied to a cohort of 30 samples stored on filter paper for several years with HBV viral loads ranging from 8.2 × 108 to 635 IU/mL. A set of 6 high-titre samples were used in a proof-of-principle study using the MinION sequencer. RESULTS: The assay allowed determination of HBV genotype and elucidation of RAS down to 600 IU/mL using a 550bp amplicon. Sequencing of a 1.2 kb amplicon using a MinION sequencer gave results consistent with Sanger sequencing and allowed the identification of minor populations of variants. CONCLUSIONS: We present two approaches for reliable HBV sequencing and RAS identification using methods suitable for resource-limited environments. This is the first demonstration of extraction-free DNA sequencing direct from DSS using MinION and these workflows are adaptable to the investigation of other DNA viruses.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Hepatitis B , Nanopore Sequencing , Antiviral Agents/therapeutic use , DNA, Viral , Drug Resistance, Viral/drug effects , Hepatitis B/drug therapy , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Lamivudine/therapeutic use , Mutation , Pharmaceutical Preparations , Polymerase Chain Reaction
18.
Viruses ; 12(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316655

ABSTRACT

Orthohantaviruses are globally distributed viruses, associated with rodents and other small mammals. However, data on the circulation of orthohantaviruses within the UK, particularly the UK-endemic Tatenale virus, is sparse. In this study, 531 animals from five rodent species were collected from two locations in northern and central England and screened using a degenerate, pan- orthohantavirus RT-PCR assay. Tatenale virus was detected in a single field vole (Microtus agrestis) from central England and twelve field voles from northern England. Unbiased high-throughput sequencing of the central English strain resulted in the recovery of the complete coding sequence of a novel strain of Tatenale virus, whilst PCR-primer walking of the northern English strain recovered almost complete coding sequence of a previously identified strain. These findings represented the detection of a third lineage of Tatenale virus in the United Kingdom and extended the known geographic distribution of these viruses from northern to central England. Furthermore, the recovery of the complete coding sequence revealed that Tatenale virus was sufficiently related to the recently identified Traemersee virus, to meet the accepted criteria for classification as a single species of orthohantavirus.


Subject(s)
Genetic Variation , Open Reading Frames , Orthohantavirus/classification , Orthohantavirus/genetics , Phylogeny , High-Throughput Nucleotide Sequencing , RNA, Viral , Sequence Analysis, RNA , United Kingdom
19.
Article in English | MEDLINE | ID: mdl-33383781

ABSTRACT

We aimed to explore student and staff perceptions and experiences of a pilot SARS-CoV-2 asymptomatic testing service (P-ATS) in a UK university campus setting. This was a mixed-method study comprised of an online survey, and thematic analysis of qualitative data from interviews and focus groups conducted at the mid-point and end of the 12-week P-ATS programme. Ninety-nine students (84.8% female, 70% first year; 93.9% P-ATS participants) completed an online survey, 41 individuals attended interviews or focus groups, including 31 students (21 first year; 10 final year) and 10 staff. All types of testing and logistics were highly acceptable (virus: swab, saliva; antibody: finger prick) and 94.9% would participate again. Reported adherence to weekly virus testing was high (92.4% completed ≥6 tests; 70.8% submitted all 10 swabs; 89.2% completed ≥1 saliva sample) and 76.9% submitted ≥3 blood samples. Students tested to "keep campus safe", "contribute to national efforts to control COVID-19", and "protect others". In total, 31.3% had high anxiety as measured by the Generalized Anxiety Disorder scale (GAD-7) (27.1% of first year). Students with lower levels of anxiety and greater satisfaction with university communications around P-ATS were more likely to adhere to virus and antibody tests. Increased adherence to testing was associated with higher perceived risk of COVID-19 to self and others. Qualitative findings revealed 5 themes and 13 sub-themes: "emotional responses to COVID-19", "university life during COVID-19", "influences on testing participation", "testing physical and logistical factors" and "testing effects on mental wellbeing". Asymptomatic COVID-19 testing (SARS-CoV-2 virus/antibodies) is highly acceptable to students and staff in a university campus setting. Clear communications and strategies to reduce anxiety are likely to be important for testing uptake and adherence. Strategies are needed to facilitate social connections and mitigate the mental health impacts of COVID-19 and self-isolation.


Subject(s)
Asymptomatic Infections , COVID-19 Testing , COVID-19/diagnosis , COVID-19/psychology , Female , Humans , Male , Specimen Handling , Surveys and Questionnaires , United Kingdom , Universities , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...