Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(3-2): 035301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632731

ABSTRACT

In this paper, the underlying problem with the color-gradient (CG) method in handling density-contrast fluids is explored. It is shown that the CG method is not fluid invariant. Based on nondimensionalizing the CG method, a phase-field interface-capturing model is proposed which tackles the difficulty of handling density-contrast fluids. The proposed formulation is developed for incompressible, immiscible two-fluid flows without phase-change phenomena, and a solver based on the lattice Boltzmann method is proposed. Coupled with an available robust hydrodynamic solver, a binary fluid flow package that handles fluid flows with high density and viscosity contrasts is presented. The macroscopic and lattice Boltzmann equivalents of the formulation, which make the physical interpretation of it easier, are presented. In contrast to existing color-gradient models where the interface-capturing equations are coupled with the hydrodynamic ones and include the surface tension forces, the proposed formulation is in the same spirit as the other phase-field models such as the Cahn-Hilliard and the Allen-Cahn equations and is solely employed to capture the interface advected due to a flow velocity. As such, similarly to other phase-field models, a so-called mobility parameter comes into play. In contrast, the mobility is not related to the density field but a constant coefficient. This leads to a formulation that avoids individual speed of sound for the different fluids. On the lattice Boltzmann solver side, two separate distribution functions are adopted to solve the formulation, and another one is employed to solve the Navier-Stokes equations, yielding a total of three equations. Two series of numerical tests are conducted to validate the accuracy and stability of the model, where we compare simulated results with available analytical and numerical solutions, and good agreement is observed. In the first set the interfacial evolution equations are assessed, while in the second set the hydrodynamic effects are taken into account.

2.
Eur Phys J E Soft Matter ; 46(6): 44, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306829

ABSTRACT

Multiphase flows through reservoir rocks are a universal and complex phenomenon. Relative permeability is one of the primary determinants in reservoir performance calculations. Accurate estimation of the relative permeability is crucial for reservoir management and future production. In this paper, we propose inferring relative permeability curves from sparse saturation data with an ensemble Kalman method. We represent these curves through a series of positive increments of relative permeability at specified saturation values, which guarantees monotonicity within, and boundedness between 0 and 1. The proposed method is validated by the inference performances in two synthetic benchmarks designed by SPE and a field-scale model developed by Equinor that includes certain real field features. The results indicate that the relative permeability curves can be accurately estimated within the saturation intervals having available observations and appropriately extrapolated to the remaining saturations by virtue of the embedded constraints. The predicted well responses are comparable to the ground truths, even though they are not included as the observation. The study demonstrates the feasibility of using ensemble Kalman method to infer relative permeability curves from saturation data, which can aid in the predictions of multiphase flow and reservoir production.

3.
Phys Rev E ; 107(2-1): 024408, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932594

ABSTRACT

We develop a mesoscopic approach to model the nonequilibrium behavior of membranes at the cellular scale. Relying on lattice Boltzmann methods, we develop a solution procedure to recover the Nernst-Planck equations and Gauss's law. A general closure rule is developed to describe mass transport across the membrane, which is able to account for protein-mediated diffusion based on a coarse-grained representation. We demonstrate that our model is able to recover the Goldman equation from first principles and show that hyperpolarization occurs when membrane charging dynamics are controlled by multiple relaxation timescales. The approach provides a promising way to characterize non-equilibrium behaviors that arise due to the role of membranes in mediating transport based on realistic three-dimensional cell geometries.

4.
Nat Commun ; 14(1): 745, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788206

ABSTRACT

Proton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (<1 mm2) or simplified architectures. Herein, an advancement in water modelling is achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, and direct multi-phase simulation. The resulting image is the most resolved domain (16 mm2 with 700 nm voxel resolution) and the largest direct multi-phase flow simulation of a fuel cell. This generalisable approach unveils multi-scale water clustering and transport mechanisms over large dry and flooded areas in the gas diffusion layer and flow fields, paving the way for next generation proton exchange membrane fuel cells with optimised structures and wettabilities.

5.
J Colloid Interface Sci ; 608(Pt 3): 2330-2338, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34774316

ABSTRACT

HYPOTHESIS: Emerging energy-related technologies deal with multiscale hierarchical structures, intricate surface morphology, non-axisymmetric interfaces, and complex contact lines where wetting is difficult to quantify with classical methods. We hypothesise that a universal description of wetting on multiscale surfaces can be developed by using integral geometry coupled to thermodynamic laws. The proposed approach separates the different hierarchy levels of physical description from the thermodynamic description, allowing for a universal description of wetting on multiscale surfaces. THEORY AND SIMULATIONS: The theoretical framework is presented followed by application to limiting cases of wetting on multiscale surfaces. Limiting cases include those considered in the Wenzel, Cassie-Baxter, and wicking state models. Wetting characterisation of multiscale surfaces is explored by conducting simulations of a fluid droplet on a structurally rough surface and a chemically heterogeneous surface. FINDINGS: The underlying origin of the classical wetting models is shown to be rooted within the proposed theoretical framework. Integral geometry provides a topological-based wetting metric that is not contingent on any type of wetting state. The wetting metric is demonstrated to account for multiscale features along the common line in a scale consistent way; providing a universal description of wetting for multiscale surfaces.

6.
Phys Rev E ; 104(3-2): 035106, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654200

ABSTRACT

We develop nonequilibrium theory by using averages in time and space as a generalized way to upscale thermodynamics in nonergodic systems. The approach offers a classical perspective on the energy dynamics in fluctuating systems. The rate of entropy production is shown to be explicitly scale dependent when considered in this context. We show that while any stationary process can be represented as having zero entropy production, second law constraints due to the Clausius theorem are preserved due to the fact that heat and work are related based on conservation of energy. As a demonstration, we consider the energy dynamics for the Carnot cycle and for Maxwell's demon. We then consider nonstationary processes, applying time-and-space averages to characterize nonergodic effects in heterogeneous systems where energy barriers such as compositional gradients are present. We show that the derived theory can be used to understand the origins of anomalous diffusion phenomena in systems where Fick's law applies at small length scales, but not at large length scales. We further characterize fluctuations in capillary-dominated systems, which are nonstationary due to the irreversibility of cooperative events.

8.
J Colloid Interface Sci ; 578: 106-115, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32521350

ABSTRACT

HYPOTHESIS: Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young's equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. THEORY AND EXPERIMENTS: We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. FINDINGS: We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.

9.
J Colloid Interface Sci ; 561: 173-180, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31812863

ABSTRACT

HYPOTHESIS: Wetting phenomena play a key role in flows through porous media. Relative permeability and capillary pressure-saturation functions show a high sensitivity to wettability, which has different definitions at the continuum- and pore-scale. We hypothesize that the wetting state of a porous medium can be described in terms of topological arguments that constrain the morphological state of immiscible fluids, which provides a direct link between the continuum-scale metrics of wettability and pore-scale contact angles. EXPERIMENTS: We perform primary drainage and imbibition experiments on Bentheimer sandstone using air and brine. Topological properties, such as Euler characteristic and interfacial curvature are measured utilizing X-ray micro-computed tomography at irreducible air saturation. We also present measurements for the United States Bureau of Mines (USBM) index, capillary pressure and pore-scale contact angles. Additional studies are performed using two-phase Lattice Boltzmann simulations to test a wider range of wetting conditions. FINDINGS: We demonstrate that contact angle distributions for a porous multiphase system can be predicted within a few percent difference of directly measured pore-scale contact angles using the presented method. This provides a general framework on how continuum-scale data can be used to describe the geometrical state of fluids within porous media.

10.
Proc Natl Acad Sci U S A ; 116(28): 13799-13806, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31227608

ABSTRACT

Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.

11.
Phys Rev E ; 94(4-1): 043113, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841482

ABSTRACT

In multiphase flow in porous media the consistent pore to Darcy scale description of two-fluid flow processes has been a long-standing challenge. Immiscible displacement processes occur at the scale of individual pores. However, the larger scale behavior is described by phenomenological relationships such as relative permeability, which typically uses only fluid saturation as a state variable. As a consequence pore scale properties such as contact angle cannot be directly related to Darcy scale flow parameters. Advanced imaging and computational technologies are closing the gap between the pore and Darcy scale, supporting the development of new theory. We utilize fast x-ray microtomography to observe pore-scale two-fluid configurations during immiscible flow and initialize lattice Boltzmann simulations that demonstrate that the mobilization of disconnected nonwetting phase clusters can account for a significant fraction of the total flux. We show that fluid topology can undergo substantial changes during flow at constant saturation, which is one of the underlying causes of hysteretic behavior. Traditional assumptions about fluid configurations are therefore an oversimplification. Our results suggest that the role of fluid connectivity cannot be ignored for multiphase flow. On the Darcy scale, fluid topology and phase connectivity are accounted for by interfacial area and Euler characteristic as parameters that are missing from our current models.

12.
Phys Rev E ; 94(3-1): 033102, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739835

ABSTRACT

Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

13.
J Fluency Disord ; 27(2): 115-33; quiz 133-4, 2002.
Article in English | MEDLINE | ID: mdl-12145982

ABSTRACT

UNLABELLED: Support groups are rapidly becoming an important part of the recovery process for many people who stutter, and a growing number of speech-language pathologists (SLPs) are encouraging their clients to participate in support groups. At present, however, little is known about the individuals who join stuttering support groups and the benefits they derive from their participation. This study surveyed members of the National Stuttering Association (NSA) to learn about their experiences in support groups, as well as their experiences in speech therapy. Respondents were 71 people who attended the 1999 NSA conference in Tacoma, WA. The majority of respondents had participated in treatment several times during their lives, using a variety of techniques. Respondents who had participated in fluency-shaping treatments were more likely to report that they had experienced a relapse than those who had participated in stuttering modification or combined treatments. Also, there was a strong positive correlation between respondents' satisfaction with treatment and their judgments of clinicians' competence, suggesting that improved training for SLPs should lead to improved treatment for people who stutter. Results will be used to provide a foundation for further evaluations of the benefits of support group participation for people who stutter. EDUCATIONAL OBJECTIVES: The reader will learn (a) that many people who participate in the NSA have had numerous and varied experiences with speech treatment throughout their lives, (b) which aspects of treatment and support group participation are seen as most beneficial for people who participate in the NSA.


Subject(s)
Self-Help Groups , Speech Therapy , Stuttering , Voluntary Health Agencies , Adolescent , Adult , Aged , Education, Continuing , Female , Humans , Male , Middle Aged , Patient Satisfaction , Stuttering/psychology , Stuttering/therapy , United States
14.
Congr Rec (Dly Ed) ; 124(58): S6232-4, 1978 Apr 25.
Article in English | MEDLINE | ID: mdl-11663872
SELECTION OF CITATIONS
SEARCH DETAIL
...