Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 325: 103112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401420

ABSTRACT

Thermal management is a critical challenge in advanced systems such as electric vehicles (EVs), electronic components, and photoelectric modules. Thermal alleviation is carried out through the cooling systems in which the coolant and the heat exchangers are the key components. The study examines recent literature on nanofluids and heat exchanger tubes along with state-of-the-art concepts being tested for heat transfer intensification. The performance of nanofluids in several common heat transfer tubes' geometries/configurations and the effectiveness of novel heat transfer augmentation mechanisms are presented. Promising results have been reported, showing improved heat transfer parameters with the use of nanofluids and intensification mechanisms like turbulators, fins, grooves, and variations in temperature and flow velocity. These mechanisms enhance dispersion stability, achieve a more uniform temperature distribution, and reduce the boundary layer thickness, resulting in lower tube wall temperatures. Moreover, introducing flow pulsations and magnetic effects further enhances particle mobility and heat exchange. However, there are limitations, such as increased frictional losses and pressure drop due to magnetic effects. The combination of nanofluids, novel heat exchanger tube geometries, and turbulators holds great promise for highly efficient cooling systems in the future. The study also presents a bibliometric analysis that offers valuable insights into the impact and visibility of research in the integration of nanofluids into heat transfer systems. These insights aid in identifying emerging trends and advancing the field towards more efficient and compact systems, paving the way for future advancements.

2.
Nat Commun ; 15(1): 913, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291032

ABSTRACT

Biologic therapies targeting the IL-23/IL-17 axis have transformed the treatment of psoriasis. However, the early mechanisms of action of these drugs remain poorly understood. Here, we perform longitudinal single-cell RNA-sequencing in affected individuals receiving IL-23 inhibitor therapy. By profiling skin at baseline, day 3 and day 14 of treatment, we demonstrate that IL-23 blockade causes marked gene expression shifts, with fibroblast and myeloid populations displaying the most extensive changes at day 3. We also identify a transient WNT5A+/IL24+ fibroblast state, which is only detectable in lesional skin. In-silico and in-vitro studies indicate that signals stemming from these WNT5A+/IL24+ fibroblasts upregulate multiple inflammatory genes in keratinocytes. Importantly, the abundance of WNT5A+/IL24+ fibroblasts is significantly reduced after treatment. This observation is validated in-silico, by deconvolution of multiple transcriptomic datasets, and experimentally, by RNA in-situ hybridization. These findings demonstrate that the evolution of inflammatory fibroblast states is a key feature of resolving psoriasis skin.


Subject(s)
Psoriasis , Humans , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/metabolism , Skin/metabolism , Keratinocytes/metabolism , Interleukin-23/genetics , Interleukin-23/metabolism , RNA/metabolism , Fibroblasts/metabolism , Single-Cell Analysis
3.
J Allergy Clin Immunol ; 150(4): 882-893, 2022 10.
Article in English | MEDLINE | ID: mdl-35568077

ABSTRACT

BACKGROUND: Palmoplantar pustulosis (PPP) is a severe inflammatory skin disorder characterized by eruptions of painful, neutrophil-filled pustules on the palms and soles. Although PPP has a profound effect on quality of life, it remains poorly understood and notoriously difficult to treat. OBJECTIVE: We sought to investigate the immune pathways that underlie the pathogenesis of PPP. METHODS: We applied bulk and single-cell RNA sequencing (RNA-Seq) methods to the analysis of skin biopsy samples and peripheral blood mononuclear cells. We validated our results by flow cytometry and immune fluorescence microscopy RESULTS: Bulk RNA-Seq of patient skin detected an unexpected signature of T-cell activation, with a significant overexpression of several TH2 genes typically upregulated in atopic dermatitis. To further explore these findings, we carried out single-cell RNA-Seq in peripheral blood mononuclear cells of healthy and affected individuals. Memory CD4+ T cells of PPP patients were skewed toward a TH17 phenotype, a phenomenon that was particularly significant among cutaneous lymphocyte-associated antigen-positive skin-homing cells. We also identified a subset of memory CD4+ T cells that expressed both TH17 (KLRB1/CD161) and TH2 (GATA3) markers, with pseudotime analysis suggesting that the population was the result of TH17 to TH2 plasticity. Interestingly, the GATA3+/CD161+ cells were overrepresented among the peripheral blood mononuclear cells of affected individuals, both in the single-cell RNA-Seq data set and in independent flow cytometry experiments. Dual-positive cells were also detected in patient skin by immune fluorescence microscopy. CONCLUSIONS: PPP is associated with complex T-cell activation patterns and may explain why biologic drugs that target individual T helper cell populations have shown limited therapeutic efficacy.


Subject(s)
Biological Products , Psoriasis , Skin Diseases, Vesiculobullous , Cell Plasticity , Chronic Disease , Humans , Leukocytes, Mononuclear/pathology , Quality of Life , Single-Cell Analysis
4.
Cells ; 11(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35011586

ABSTRACT

Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success. The aim of this study was to investigate in vitro the immunological properties of human pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs). These cells expressed MHC class I molecules while they lacked MHC class II and co-stimulatory molecules, such as CD80 and CD86. Following stimulation with IFN-γ, HLCs upregulated CD40, PD-L1 and MHC class I molecules. When co-cultured with allogeneic T cells, HLCs did not induce T cell proliferation; furthermore, when T cells were stimulated via αCD3/CD28 beads, HLCs inhibited their proliferation via IDO1 and tryptophan deprivation. These results demonstrate that PSC-derived HLCs possess immunoregulatory functions, at least in vitro.


Subject(s)
Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Tryptophan/deficiency , Allogeneic Cells/cytology , Cell Proliferation , Humans , Immunologic Factors/metabolism , Immunophenotyping , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology
5.
J Vis Exp ; (156)2020 02 23.
Article in English | MEDLINE | ID: mdl-32150159

ABSTRACT

Electrowetting is the effect by which the contact angle of a droplet exposed to a surface charge is modified. Electrowetting-on-dielectric (EWOD) exploits the dielectric properties of thin insulator films to enhance the charge density and hence boost the electrowetting effect. The presence of charges results in an electrically induced spreading of the droplet which permits purposeful manipulation across a hydrophobic surface. Here, we demonstrate EWOD-based protocol for sample processing and detection of four categories of antigens, using an automated surface actuation platform, via two variations of an Enzyme-Linked Immunosorbent Assay (ELISA) methods. The ELISA is performed on magnetic beads with immobilized primary antibodies which can be selected to target a specific antigen. An antibody conjugated to HRP binds to the antigen and is mixed with H2O2/Luminol for quantification of the captured pathogens. Assay completion times of between 6 and 10 min were achieved, whilst minuscule volumes of reagents were utilized.


Subject(s)
Electrowetting/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Lab-On-A-Chip Devices , Antigens/analysis , Automation , Hydrophobic and Hydrophilic Interactions
6.
Front Immunol ; 10: 1311, 2019.
Article in English | MEDLINE | ID: mdl-31275306

ABSTRACT

Regulatory T cells (Tregs) are a subpopulation of T cells that maintain immunological tolerance. In inflammatory responses the function of Tregs is tightly controlled by several factors including signaling through innate receptors such as Toll like receptors and anaphylatoxin receptors allowing an effective immune response to be generated. Protease-activated receptors (PARs) are another family of innate receptors expressed on multiple cell types and involved in the pathogenesis of autoimmune disorders. Whether proteases are able to directly modulate Treg function is unknown. Here, we show using two complimentary approaches that signaling through PAR-4 influences the expression of CD25, CD62L, and CD73, the suppressive capacity, and the stability of Tregs, via phosphorylation of FoxO1 and negative regulation of PTEN and FoxP3. Taken together, our results demonstrate an important role of PAR4 in tuning the function of Tregs and open the possibility of targeting PAR4 to modulate immune responses.


Subject(s)
Receptors, Thrombin/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/immunology , Cells, Cultured , Forkhead Transcription Factors/immunology , Immune Tolerance/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , PTEN Phosphohydrolase/immunology , Signal Transduction/immunology
7.
Biosens Bioelectron ; 128: 52-60, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30634074

ABSTRACT

With the tangible threat posed by the release of chemical and biological warfare (CBW) agents, detection of airborne pathogens is a critical military and security concern. Recent air sampling techniques developed for biocollection take advantage of Electrowetting on Dielectric (EWOD) to recover material, producing highly concentrated droplet samples. Bespoke EWOD-based digital microfluidics platforms are very well suited to take full advantage of the microlitre concentrated droplet resulting from this recovery process. In this paper we present a free-standing, fully automated DMF platform for immunoassay. Using this system, we demonstrate the automated detection of four classes of CBW agent simulant biomolecules and organisms each representing credible threat agents. Taking advantage of the full magnetic separation process with antibody-bound microbeads, rapid and complete separation of specific target antigen can be achieved with minimal washing steps allowing for very rapid detection. Here, we report clear detection of four categories of antigens achieved with assay completion times of between six and ten minutes. Detection of HSA, Bacillus atrophaeus (BG spores), MS2 bacteriophage and Escherichia coli are demonstrated with estimated limit of detection of respectively 30 ng ml-1, 4 × 104 cfu ml-1, 106 pfu ml-1 and 2 × 107 cfu ml-1. The fully-integrated portable platform described in this paper is highly compatible with the next generation of electrowetting-coupled air samplers and thus shows strong potential toward future in-field deployable biodetection systems and could have key implication in life-changing sectors such as healthcare, environment or food security.


Subject(s)
Biological Warfare , Biosensing Techniques , Immunoassay , Microfluidic Analytical Techniques , Electrowetting , Humans , Magnetics/methods
8.
J Chem Technol Biotechnol ; 90(10): 1927-1936, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27546945

ABSTRACT

BACKGROUND: Microbioreactors have emerged as novel tools for early bioprocess development. Mixing lies at the heart of bioreactor operation (at all scales). The successful implementation of micro-stirring methods is thus central to the further advancement of microbioreactor technology. The aim of this study was to develop a micro-stirring method that aids robust microbioreactor operation and facilitates cost-effective parallelization. RESULTS: A microbioreactor was developed with a novel micro-stirring method involving the movement of a magnetic bead by sequenced activation of a ring of electromagnets. The micro-stirring method offers flexibility in chamber designs, and mixing is demonstrated in cylindrical, diamond and triangular shaped reactor chambers. Mixing was analyzed for different electromagnet on/off sequences; mixing times of 4.5 s, 2.9 s, and 2.5 s were achieved for cylindrical, diamond and triangular shaped chambers, respectively. Ease of micro-bubble free priming, a typical challenge of cylindrical shaped microbioreactor chambers, was obtained with a diamond-shaped chamber. Consistent mixing behavior was observed between the constituent reactors in a duplex system. CONCLUSION: A novel stirring method using electromagnetic actuation offering rapid mixing and easy integration with microbioreactors was characterized. The design flexibility gained enables fabrication of chambers suitable for microfluidic operation, and a duplex demonstrator highlights potential for cost-effective parallelization. Combined with a previously published cassette-like fabrication of microbioreactors, these advances will facilitate the development of robust and parallelized microbioreactors. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...