Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(24): 247401, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705653

ABSTRACT

We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory.

2.
Phys Rev Lett ; 100(13): 136405, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18517978

ABSTRACT

Optical emission from type-II ZnTe/ZnSe quantum dots demonstrates large and persistent oscillations in both the peak energy and intensity indicating the formation of coherently rotating states. Furthermore, these Aharonov-Bohm oscillations are shown to be remarkably robust and persist until 180 K. This is at least one order of magnitude greater than the typical temperatures in lithographically defined rings. To our knowledge, this is the highest temperature at which the AB effect has been observed in solid-state and molecular nanostructures.

3.
Phys Rev Lett ; 88(5): 056801, 2002 Feb 04.
Article in English | MEDLINE | ID: mdl-11863762

ABSTRACT

Internal transitions of quasi-two-dimensional, negatively charged magnetoexcitons ( X-) and their evolution with excess electron density have been studied in GaAs/AlGaAs quantum wells. In the dilute electron limit, due to magnetic translational invariance, the optically detected resonance spectra are dominated by bound-to-continuum bands in contrast to the negatively charged donor system D-, which exhibits strictly bound-to-bound transitions. With increasing excess electron density Landau-level filling factors nu<2 the X--like transitions are blueshifted; they are absent for nu>2. The blueshifted transitions are explained in terms of a new type of collective excitation---magnetoplasmons bound to a mobile valence band hole.

SELECTION OF CITATIONS
SEARCH DETAIL
...