Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 40(7): 866-874, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30677168

ABSTRACT

A trivial flaw in the utilization of artificial neural networks in interpolating chemical potential energy surfaces (PES) whose descriptors are Cartesian coordinates is their dependence on simple translations and rotations of the molecule under consideration. A different set of descriptors can be chosen to circumvent this problem, internuclear distances, inverse internuclear distances or z-matrix coordinates are three such descriptors. The objective is to use an interpolated PES in instanton rate constant calculations, hence information on the energy, gradient, and Hessian is required at coordinates in the vicinity of the tunneling path. Instanton theory relies on smoothly fitted Hessians, therefore we use energy, gradients, and Hessians in the training procedure. A major challenge is presented in the proper back-transformation of the output gradients and Hessians from internal coordinates to Cartesian coordinates. We perform comparisons between our method, a previous approach and on-the-fly rate constant calcuations on the hydrogen abstraction from methanol and on the hydrogen addition to isocyanic acid. © 2018Wiley Periodicals, Inc.

2.
J Chem Phys ; 146(7): 074105, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28228015

ABSTRACT

Microcanonical instanton theory offers the promise of providing rate constants for chemical reactions including quantum tunneling of atoms over the whole temperature range. We discuss different rate expressions, which require the calculation of stability parameters of the instantons. The traditional way of obtaining these stability parameters is shown to be numerically unstable in practical applications. We provide three alternative algorithms to obtain such stability parameters for non-separable systems, i.e., systems in which the vibrational modes perpendicular to the instanton path couple to movement along the path. We show the applicability of our algorithms on two molecular systems: H2 + OH → H2O + H using a fitted potential energy surface and HNCO + H → NH2CO using a potential obtained on-the-fly from density functional calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...