Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(3): 1596-1605, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31907313

ABSTRACT

Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.


Subject(s)
Atmosphere , Hemiterpenes/biosynthesis , Hybridization, Genetic , Populus/growth & development , Populus/metabolism , Air Pollution , Arizona , Biofuels , Biomass , Butadienes , Carbon Dioxide/metabolism , Carotenoids/metabolism , Climate , Oregon , Photosynthesis , Plant Leaves/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified/metabolism , Populus/genetics , Proteome , RNA Interference , Seasons , Stress, Physiological , Terpenes/metabolism , Thermotolerance/physiology , Wood
2.
Plant Cell Environ ; 39(11): 2404-2413, 2016 11.
Article in English | MEDLINE | ID: mdl-27352095

ABSTRACT

Plant isoprene emissions have been linked to several reaction pathways involved in atmospheric photochemistry. Evidence exists from a limited set of past observations that isoprene emission rate (Is ) decreases as a function of increasing atmospheric CO2 concentration, and that increased temperature suppresses the CO2 effect. We studied interactions between intercellular CO2 concentration (Ci ) and temperature as they affect Is in field-grown hybrid poplar trees in one of the warmest climates on earth - the Sonoran Desert of the southwestern United States. We observed an unexpected midsummer downregulation of Is despite the persistence of relatively high temperatures. High temperature suppression of the Is :Ci relation occurred at all times during the growing season, but sensitivity of Is to increased Ci was greatest during the midsummer period when Is was lowest. We interpret the seasonal downregulation of Is and increased sensitivity of Is to Ci as being caused by weather changes associated with the onset of a regional monsoon system. Our observations on the temperature suppression of the Is :Ci relation are best explained by the existence of a small pool of chloroplastic inorganic phosphate, balanced by several large, connected metabolic fluxes, which together, determine the Ci and temperature dependencies of phosphoenolpyruvate import into the chloroplast.


Subject(s)
Butadienes/metabolism , Carbon Dioxide/metabolism , Hemiterpenes/metabolism , Pentanes/metabolism , Populus/metabolism , Temperature , Heat-Shock Response , Photosynthesis , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...