Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 5(7): 2247-61, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25071962

ABSTRACT

HER2-amplified (HER2 + ) breast cancers are treated with the anti-HER2 monoclonal antibody trastuzumab. Although trastuzumab reduces production of the angiogenic factor VEGF in HER2 + tumors, the acute and sustained effects of trastuzumab on the tumor vasculature are not understood fully, particularly in trastuzumab-resistant tumors. We used mouse models of trastuzumab sensitive and trastuzumab-resistant HER2 + breast cancers to measure dynamic changes in tumor microvessel density and hemoglobin oxygenation (sO2) in vivo using quantitative hyperspectral imaging at 2, 5, 9, and 14 days after antibody treatment. Further analysis quantified the distribution of microvessels into low and high oxygenation groups, and monitored changes in these distributions with trastuzumab treatment. Gold standard immunohistochemistry was performed to validate complementary markers of tumor cell and vascular response to treatment. Trastuzumab treatment in both responsive and resistant tumors resulted in decreased sO2 5 days after initial treatment when compared to IgG-treated controls (p<0.05). Importantly, responsive tumors showed significantly higher vessel density and significantly lower sO2 than all other groups at 5 days post-treatment (p<0.05). Distribution analysis of vessel sO2 showed a significant (p<0.05) shift of highly oxygenated vessels towards lower oxygenation over the time-course in both trastuzumab-treated responsive and resistant tumors. This study suggests that longitudinal hyperspectral imaging of microvessel sO2 and density could distinguish trastuzumab-responsive from trastuzumab-resistant tumors, a finding that could be exploited in the post-neoadjuvant setting to guide post-surgical treatment decisions.

2.
Biomed Opt Express ; 5(12): 4118-30, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25574425

ABSTRACT

Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies.

3.
Lasers Surg Med ; 43(4): 333-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21500228

ABSTRACT

BACKGROUND AND OBJECTIVES: We tagged melanoma cells with gold nanoparticles to show their viability for increasing sensitivity in a photoacoustic detection system. Ultimately, this study models the detection of circulating tumor cells, which are an important prognostic factor in the progress of melanoma. STUDY DESIGN/MATERIALS AND METHODS: A Q-switched, tunable Nd:YAG laser was used to irradiate cells in both a stationary and flow set-up. Photoacoustic signals were measured using a polyvinylidene fluoride (PVDF) film in the stationary test, and a commercially available ultrasonic probe for flow tests. Both unmodified melanoma cells and gold nanoparticle (AuNP) tagged melanoma were tested. RESULTS: AuNP tagged melanoma in a stationary set-up showed an average of 0.227 mV/mJ larger signal than the untagged, indicating a signal increase of 34%. At 500 nm there is a maximum difference of 0.295 mV/mJ, or a 41% increase. In flow tests, the ultrasound probe was able to detect single cells, but the increased signal from AuNP tagging was minimal. CONCLUSION: AuNP tagging proved to give an increased photoacoustic signal allowing greater sensitivity in stationary metastasized melanoma detection systems using photoacoustics.


Subject(s)
Acoustics/instrumentation , Biomarkers, Tumor/analysis , Gold/analysis , Melanoma/chemistry , Metal Nanoparticles/analysis , Neoplastic Cells, Circulating/chemistry , Skin Neoplasms/chemistry , Cell Line, Tumor , Cell Separation/methods , Flow Cytometry/methods , Humans , Lasers, Semiconductor , Melanoma/pathology , Molecular Probe Techniques , Neoplastic Cells, Circulating/pathology , Pattern Recognition, Automated , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...