Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Insects ; 14(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887838

ABSTRACT

Beekeeping in Ireland has been strongly impacted by the parasitic mite Varroa destructor, whose introduction caused alarming honeybee colony losses. If unmitigated, these losses could lead to the disappearance of the native honeybee subspecies, Apis mellifera mellifera, with severe consequences for local biodiversity. Although beekeepers play a pivotal role in mitigating this crisis, beekeeping in Ireland is less intensive compared to other European regions, lacking significant infrastructure or support. These circumstances offer a unique opportunity for the development of national programmes that promote sustainable beekeeping practices for varroa control. Notably, local accounts highlight an increasing number of beekeepers successfully managing colonies in the absence of treatments, indicating a potential avenue for developing varroa-resistant stocks through selection of local colonies. Through a survey, we explored beekeeper's opinions and attitudes towards future national projects focused on the development of sustainable beekeeping practices and selection for varroa resistance. The findings confirm the hobbyist nature of Irish beekeepers and their preference for the native honey bee. Some beekeepers were reported to be effectively controlling varroa without treatment, yielding comparable survivals to those using treatments. The majority expressed preference towards a varroa-resistant line if it were of native origin; a few were open to importing non-Irish lines. Overall, a strong willingness to participate in a national breeding programme was expressed. These findings highlight a prime opportunity for Ireland to establish a community-driven strategy based on sustainable beekeeping practices for safeguarding native honeybees and local biodiversity.

2.
Mar Drugs ; 20(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35049929

ABSTRACT

Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70-59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.


Subject(s)
Aquatic Organisms/chemistry , Biological Products/chemistry , Porifera/chemistry , Animals , Phylogeny
3.
Mar Drugs ; 17(4)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978942

ABSTRACT

The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites. Marine fungi represent one of the most suitable sources for the discovery of new compounds. Thus, the aim of this work was (i) to isolate and identify fungi associated with the Atlantic sponge Grantia compressa; (ii) to study the fungal metabolites by applying the OSMAC approach (one strain; many compounds); (iii) to test fungal compounds for their antimicrobial activities. Twenty-one fungal strains (17 taxa) were isolated from G. compressa. The OSMAC approach revealed an astonishing metabolic diversity in the marine fungus Eurotium chevalieri MUT 2316, from which 10 compounds were extracted, isolated, and characterized. All metabolites were tested against viruses and bacteria (reference and multidrug-resistant strains). Dihydroauroglaucin completely inhibited the replication of influenza A virus; as for herpes simplex virus 1, total inhibition of replication was observed for both physcion and neoechinulin D. Six out of 10 compounds were active against Gram-positive bacteria with isodihydroauroglaucin being the most promising compound (minimal inhibitory concentration (MIC) 4-64 µg/mL) with bactericidal activity. Overall, G. compressa proved to be an outstanding source of fungal diversity. Marine fungi were capable of producing different metabolites; in particular, the compounds isolated from E. chevalieri showed promising bioactivity against well-known and emerging pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Biotechnology/methods , Eurotium/metabolism , Porifera/microbiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , Aquatic Organisms/metabolism , Biodiversity , Chlorocebus aethiops , Dogs , Eurotium/genetics , Eurotium/isolation & purification , Gram-Positive Bacteria/drug effects , Herpesvirus 1, Human/drug effects , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Vero Cells , Virus Replication/drug effects
4.
Dev Genes Evol ; 229(1): 35-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30756180

ABSTRACT

Silicatein is the main protein responsible for the formation of spicules, tiny structures that constitute the silica skeleton of marine demosponges (Phylum Porifera). A unique innovation in Porifera that evolved from the cathepsin L family of proteins, it has been reported that two amino acids (S and H) are necessary to form the catalytic triad (SHN) to enable silica condensation. However, a diversity of silicatein sequence variants has since been reported with a variable pattern of presence/absence across sponge groups. Variants containing CHN or C/SQN at the active site appear more common in sponges from the Haplosclerida. Here, we report the expression levels of five silicatein variants through different developmental stages in the haplosclerid Haliclona indistincta. All five silicatein variants were expressed at low levels in the free-swimming larvae, which lack spicules and expression significantly increased at the two developmental phases in which spicules were visible. At these two phases, silicateins of CHN and C/SQN types were much more highly expressed than the SHN type indicating a possible ability of active sites with these alternative amino acids to condense silica and a more complex evolutionary story for spicule formation in marine demosponges than previously understood.


Subject(s)
Cathepsins/genetics , Gene Expression Regulation, Developmental , Haliclona/genetics , Animals , Cathepsins/chemistry , Cathepsins/metabolism , Haliclona/growth & development , Haliclona/metabolism
5.
Mol Phylogenet Evol ; 131: 245-253, 2019 02.
Article in English | MEDLINE | ID: mdl-30502904

ABSTRACT

The skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't. As part of an effort to further understand skeleton formation in marine sponges of the order Haplosclerida, a search for all silicatein variants were made in Irish species representing the main clades of this large sponge group. For this task, transcriptomes were sequenced and de novo assembled from Haliclona oculata, H. simulans and H. indistincta. Silicatein genes were identified from these and all available genomes and transcriptomes from Porifera. These were analysed along with all complete silicateins from GenBank. Silicateins were only found in species belonging to the class Demospongiae but excluding Keratosa and Verongimorpha and there was significant duplication and diversity of these genes. Silicateins showing SHN at the active site were polyphyletic. Indeed silicatein sequences were divided into six major clades (CHNI, CHNII, CHNIII, SHNI, SHNII and C/SQN). In those clades where haplosclerids were well represented the silicatein phylogeny reflected previous ribosomal and mitochondrial topologies. The most basal silicatein clade (CHNI) contained sequences only from marine haplosclerids and freshwater sponges while one silicatein from H. indistincta was more related to cathepsins L (outgroup) than to the overall silicatein clade indicating the presence of an old silicatein or an intermediary form. This data could suggest that marine haplosclerids were one of the first groups of extant demosponges to acquire silicatein genes. Furthermore, we suggest that the paucity of spicule types in this group may be due to their single copy of SHNI variants, and the lack of a silintaphin gene.


Subject(s)
Bone and Bones/anatomy & histology , Evolution, Molecular , Porifera/genetics , Animals , Base Sequence , Phylogeny , Transcriptome/genetics
7.
Sci Rep ; 8(1): 8552, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867207

ABSTRACT

The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.


Subject(s)
Bees/genetics , Diploidy , Genotyping Techniques/methods , Haploidy , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Animals
8.
Gigascience ; 6(10): 1-7, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29020741

ABSTRACT

Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.


Subject(s)
Microbiota , Porifera/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Front Microbiol ; 8: 752, 2017.
Article in English | MEDLINE | ID: mdl-28533766

ABSTRACT

The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n = 19) and LMA (n = 17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered "HMA indicators" and "LMA indicators." Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n = 44) and LMA (n = 74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.

10.
Planta Med ; 82(9-10): 843-56, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27135628

ABSTRACT

Sponges and their associated microbiota are well known to produce a large diversity of natural products, also called specialized metabolites. In addition to their potential use in the pharmaceutical industry, these rather species-specific compounds may help in the classification of some particular sponge groups. We review herein compounds isolated from haplosclerid sponges (Class Demospongia, Order Haplosclerida) in order to help in the revision of this large group of marine invertebrates. We focus only on 3-alkylpyridine derivatives and polyacetylenic compounds, as these two groups of natural products are characteristic of haplosclerid species and are highly diverse. A close collaboration between chemists and biologists is required in order to fully apply chemotaxonomical approaches, and whenever possible biological data should include morphological and molecular data and some insight into their microbial abundance.


Subject(s)
Porifera/chemistry , Animals , Biodiversity , Porifera/classification , Pyridines/chemistry
11.
J Virol ; 89(22): 11457-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26339063

ABSTRACT

UNLABELLED: Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. IMPORTANCE: The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by HIV-1 and is now used in combination antiretroviral therapy. Treatment failure with drug-resistant virus is particularly interesting because it tends to be rare, with lack of sensitivity usually associated with the presence of CXCR4-using virus (CXCR4 is the main alternative coreceptor HIV-1 uses, in addition to CD4). We analyzed envelope sequences from HIV-1, obtained from 20 patients who enrolled in maraviroc clinical trials and experienced treatment failure, without detection of CXCR4-using virus. Evolutionary analysis was employed to identify molecular changes that confer maraviroc resistance. We found that in these individuals, resistant viruses form a distinct population that evolved once and was successful as a result of drug pressure. Further evolutionary analysis placed the complex network of interdependent mutational changes into functional groups that help explain the impediments to the emergence of maraviroc-associated R5 drug resistance.


Subject(s)
CCR5 Receptor Antagonists/therapeutic use , Cyclohexanes/therapeutic use , Drug Resistance, Viral/genetics , HIV Fusion Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Receptors, CCR5/metabolism , Triazoles/therapeutic use , Amino Acid Sequence , Base Sequence , Clinical Trials as Topic , Glycosylation , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV Infections/virology , HIV-1/metabolism , Humans , Maraviroc , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, CXCR4/metabolism , Sequence Alignment , Sequence Analysis, RNA , Signal Transduction/genetics , Treatment Failure , Virus Internalization/drug effects , Virus Replication/genetics
12.
AIDS Res Hum Retroviruses ; 30(10): 975-83, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24925099

ABSTRACT

There are few cohorts of individuals who have survived infection with HIV-1 for more than 20 years, reported and followed in the literature, and even fewer from Africa. Here we present data on a cohort of subtype C-infected individuals from rural northern Malawi. By sequencing multiple clones from long-term survivors at different time points, and using multiple genotyping approaches, we show that 5 of the 11 individuals are predicted as CXCR4 using (by ≥3/5 predictors) but only one individual is predicted as CXCR4 using by all five algorithms. Using any one genotyping approach overestimates the number of predicted CXCR4 sequences. Patterns of diversity and divergence were variable between the HIV-1 long-term survivors with some individuals showing very small amounts of variation and change, and others showing a greater amount; both patterns are consistent with what has been described in the literature.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/metabolism , HIV-1/isolation & purification , Receptors, CXCR4/metabolism , Base Sequence , DNA Primers , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/classification , Humans , Likelihood Functions , Malawi , Molecular Sequence Data , Polymerase Chain Reaction
13.
BMC Bioinformatics ; 15: 33, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24479419

ABSTRACT

BACKGROUND: Many high throughput sequencing (HTS) approaches, such as the Roche/454 platform, produce sequences in which the quality of the sequence (as measured by a Phred-like quality scores) decreases linearly across a sequence read. Undertaking quality trimming of this data is essential to enable confidence in the results of subsequent downstream analysis. Here, we have developed a novel, highly sensitive and accurate approach (QTrim) for the quality trimming of sequence reads generated using the Roche/454 sequencing platform (or any platform with long reads that outputs Phred-like quality scores). RESULTS: The performance of QTrim was evaluated against all other available quality trimming approaches on both poor and high quality 454 sequence data. In all cases, QTrim appears to perform equally as well as the best other approach (PRINSEQ) with these two methods significantly outperforming all other methods. Further analysis of the trimmed data revealed that the novel trimming approach implemented in QTrim ensures that the prevalence of low quality bases in the resulting trimmed data is substantially lower than PRINSEQ or any of the other approaches tested. CONCLUSIONS: QTrim is a novel, highly sensitive and accurate algorithm for the quality trimming of Roche/454 sequence reads. It is implemented both as an executable program that can be integrated with standalone sequence analysis pipelines and as a web-based application to enable individuals with little or no bioinformatics experience to quality trim their sequence data.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Sequence Analysis, DNA/instrumentation , Software
14.
J Morphol ; 274(11): 1263-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24026948

ABSTRACT

We provide a detailed, comparative study of the ciliated cells of the marine haplosclerid sponge Haliclona indistincta, in order to make data available for future phylogenetic comparisons at the ultrastructural level. Our study focuses on the description and analysis of the larval epithelial cells, and choanocytes of the metamorphosed juvenile sponge. The ultrastructure of the two cell types is sufficiently different to prevent our ability to conclusively determine the origin of the choanocytes from the larval ciliated cells. However, ciliated, epithelial cells were observed in a migratory position within the inner cell mass of the larval stages. Some cilia were observed within the cell's cytoplasm, which is indicative of the ciliated epithelial cell undergoing transdifferentiation into a choanocyte; while traces of other ciliated epithelial cells were contained within phagosomes, suggesting they are phagocytosed. We compared our data with other species described in the literature. However, any phylogenetic inference must wait until further detailed comparisons can be made with species whose phylogenetic position has been determined by other means, such as phylogenomics, in order to more closely link genomic, and morphological information.


Subject(s)
Cilia/ultrastructure , Epithelial Cells/ultrastructure , Haliclona/cytology , Larva/cytology , Animals , Cell Transdifferentiation , Cytoplasm/ultrastructure , Flagella/ultrastructure , Haliclona/growth & development , Haliclona/ultrastructure , Larva/anatomy & histology , Larva/ultrastructure , Metamorphosis, Biological , Phylogeny , Swimming
15.
BMC Infect Dis ; 13: 52, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23363532

ABSTRACT

BACKGROUND: The role of HIV-1 RNA in the emergence of resistance to antiretroviral therapies (ARTs) is well documented while less is known about the role of historical viruses stored in the proviral DNA. The primary focus of this work was to characterize the genetic diversity and evolution of HIV drug resistant variants in an individual's provirus during antiretroviral therapy using next generation sequencing. METHODS: Blood samples were collected prior to antiretroviral therapy exposure and during the course of treatment from five patients in whom drug resistance mutations had previously been identified using consensus sequencing. The spectrum of viral variants present in the provirus at each sampling time-point were characterized using 454 pyrosequencing from multiple combined PCR products. The prevalence of viral variants containing drug resistant mutations (DRMs) was characterized at each time-point. RESULTS: Low abundance drug resistant viruses were identified in 14 of 15 sampling time-points from the five patients. In all individuals DRMs against current therapy were identified at one or more of the sampling time-points. In two of the five individuals studied these DRMs were present prior to treatment exposure and were present at high prevalence within the amplified and sequenced viral population. DRMs to drugs other than those being currently used were identified in four of the five individuals. CONCLUSION: The presence of DRMs in the provirus, regardless of their observed prevalence did not appear to have an effect on clinical outcomes in the short term suggesting that the drug resistant viral variants present in the proviral DNA do not appear to play a role in the short term in facilitating the emergence of drug resistance.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , Genotype , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Mutation , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Prevalence , RNA, Viral
16.
AIDS Res Hum Retroviruses ; 28(3): 308-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21702696

ABSTRACT

Here we present new sequence data from HIV-1 subtype C-infected long-term survivors (LTS) from Karonga District, Malawi. Gag and env sequence data were produced from nine individuals each of whom has been HIV-1 positive for more than 20 years. We show that the three amino acid deletion in gag p17 previously described from these LTS is not real and was a result of an alignment error. We find that the use of dried blood spots for DNA-based studies is limited after storage for 20 years. We also show some unlikely amino acid changes in env C2-V3 in LTS over time and different patterns of genetic divergence among LTS. Although no clear association between mutations and survival could be shown, amino acid changes that are present in more than one LTS may, in the future, be shown to be important.


Subject(s)
Genes, env/genetics , HIV Antigens/genetics , HIV Long-Term Survivors/statistics & numerical data , HIV Seropositivity/genetics , HIV-1/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Adult , Amino Acid Sequence , Female , HIV Seropositivity/epidemiology , HIV-1/isolation & purification , Humans , Malawi/epidemiology , Male , Middle Aged , Molecular Sequence Data , Mutation , Phylogeny , Polymerase Chain Reaction , Sequence Deletion/genetics
17.
AIDS Res Ther ; 8(1): 38, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21995490

ABSTRACT

BACKGROUND: Drug resistance testing before initiation of, or during, antiretroviral therapy (ART) is not routinely performed in resource-limited settings. High levels of viral resistance circulating within the population will have impact on treatment programs by increasing the chances of transmission of resistant strains and treatment failure. Here, we investigate Drug Resistance Mutations (DRMs) from blood samples obtained at regular intervals from patients on ART (Baseline-22 months) in Karonga District, Malawi. One hundred and forty nine reverse transcriptase (RT) consensus sequences were obtained via nested PCR and automated sequencing from blood samples collected at three-month intervals from 75 HIV-1 subtype C infected individuals in the ART programme. RESULTS: Fifteen individuals showed DRMs, and in ten individuals DRMs were seen from baseline samples (reported to be ART naïve). Three individuals in whom no DRMs were observed at baseline showed the emergence of DRMs during ART exposure. Four individuals who did show DRMs at baseline showed additional DRMs at subsequent time points, while two individuals showed evidence of DRMs at baseline and either no DRMs, or different DRMs, at later timepoints. Three individuals had immune failure but none appeared to be failing clinically. CONCLUSION: Despite the presence of DRMs to drugs included in the current regimen in some individuals, and immune failure in three, no signs of clinical failure were seen during this study. This cohort will continue to be monitored as part of the Karonga Prevention Study so that the long-term impact of these mutations can be assessed. Documenting proviral population is also important in monitoring the emergence of drug resistance as selective pressure provided by ART compromises the current plasma population, archived viruses can re-emerge.

18.
PLoS One ; 6(9): e24344, 2011.
Article in English | MEDLINE | ID: mdl-21931685

ABSTRACT

The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/genetics , Genes, Mitochondrial/genetics , Phylogeny , Porifera/classification , Porifera/genetics , RNA, Ribosomal, 28S/genetics , Animals , Aquatic Organisms/enzymology , Base Sequence , Databases, Nucleic Acid , Electron Transport Complex IV/genetics , Likelihood Functions , Molecular Sequence Data , Porifera/enzymology , Sequence Analysis, DNA
19.
AIDS Res Hum Retroviruses ; 27(4): 439-44, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20950147

ABSTRACT

In this preliminary study we show that in 2008, 3 years after antiretroviral therapy was introduced into the Karonga District, Malawi, a greater than expected number of drug-naive individuals have been infected with HIV-1 subtype C virus harboring major and minor drug resistance mutations (DRMs). From a sample size of 40 reverse transcriptase (RT) consensus sequences from drug-naive individuals we found five showing NRTI and four showing NNRTI mutations with one individual showing both. From 29 protease consensus sequences, again from drug-naive individuals, we found evidence of minor DRMs in three. Additional major and minor DRMs were found in clonal sequences from a number of individuals that were not present in the original consensus sequences. This clearly illustrates the importance of sequencing multiple HIV-1 variants from individuals to fully assess drug resistance.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Mutation, Missense , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/isolation & purification , Humans , Malawi , Molecular Sequence Data , Phylogeny , Rural Population , Sequence Analysis, DNA
20.
J Med Virol ; 82(12): 2004-12, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20981786

ABSTRACT

Binding to a chemokine receptor, either CCR5 or CXCR4, by the gp120 glycoprotein is an essential step in the pathway by which HIV enters host cells. Recently, CCR5 antagonists have been developed that obstruct binding of CCR5 by gp120, thus inhibiting host cell entry. Resistance to such CCR5 antagonists may emerge, however, through the selection of viral strains capable of utilizing CXCR4 receptors. This study explores the evolutionary context of emergence, and in many cases decline, of dominant CXCR4-usage (X4) during disease progression within a number of individuals. Of seven individuals exhibiting a switch to dominant CXCR4 usage, such dominance is transient in five of them with CCR5-usage (R5) re-emerging to dominate the viral population later in disease progression. Three individuals conform to documented X4 transience in that the re-emergence of R5 dominance is an outgrowth from the predominant R5 strain. However, in two individuals we observe a novel pathway for R5 re-emergence in that R5 strains emerge to dominate late in disease progression through continued evolution of the X4 population. This suggests that the molecular mechanism of such switches between R5 and X4-usage is strain specific and that no single mechanism is shared between individuals. These findings have implications for the understanding of the mechanisms of potential emergence of resistance to CCR5 antagonists through use of the CXCR4 receptor and support the importance to have an appropriately optimized background therapy for use with entry inhibitors and, as for all HAART, to monitor drug resistance in a comprehensive manner.


Subject(s)
Evolution, Molecular , HIV-1/pathogenicity , Receptors, CXCR4/metabolism , Amino Acid Sequence , Disease Progression , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/metabolism , Humans , Phylogeny , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Receptors, CXCR4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...