Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5550, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144563

ABSTRACT

The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Diagnostic Imaging , Neurons/physiology , Optogenetics , Action Potentials/physiology , Animals , Cell Survival , Cells, Cultured , Cerebrospinal Fluid/metabolism , Culture Media , Fluorescence , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Light , Nerve Net/physiology , Osmolar Concentration , Rats , Signal-To-Noise Ratio , Synapses/physiology
2.
Cell Rep ; 9(6): 2043-55, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25533344

ABSTRACT

During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF), the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh) and bone morphogenetic protein (BMP) pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.


Subject(s)
Compound Eye, Arthropod/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Epithelium/metabolism , Integrin alpha Chains/metabolism , Microtubules/metabolism , Actins/metabolism , Animals , Compound Eye, Arthropod/embryology , Drosophila/growth & development , Drosophila Proteins/genetics , Epithelium/embryology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Integrin alpha Chains/genetics , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...