Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 59(9): 5278-87, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077256

ABSTRACT

The type II topoisomerases DNA gyrase and topoisomerase IV are clinically validated bacterial targets that catalyze the modulation of DNA topology that is vital to DNA replication, repair, and decatenation. Increasing resistance to fluoroquinolones, which trap the topoisomerase-DNA complex, has led to significant efforts in the discovery of novel inhibitors of these targets. AZ6142 is a member of the class of novel bacterial topoisomerase inhibitors (NBTIs) that utilizes a distinct mechanism to trap the protein-DNA complex. AZ6142 has very potent activity against Gram-positive organisms, including Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes. In this study, we determined the frequencies of resistance to AZ6142 and other representative NBTI compounds in S. aureus and S. pneumoniae. The frequencies of selection of resistant mutants at 4× the MIC were 1.7 × 10(-8) for S. aureus and <5.5 × 10(-10) for S. pneumoniae. To improve our understanding of the NBTI mechanism of inhibition, the resistant S. aureus mutants were characterized and 20 unique substitutions in the topoisomerase subunits were identified. Many of these substitutions were located outside the NBTI binding pocket and impact the susceptibility of AZ6142, resulting in a 4- to 32-fold elevation in the MIC over the wild-type parent strain. Data on cross-resistance with other NBTIs and fluoroquinolones enabled the differentiation of scaffold-specific changes from compound-specific variations. Our results suggest that AZ6142 inhibits both type II topoisomerases in S. aureus but that DNA gyrase is the primary target. Further, the genotype of the resistant mutants suggests that domain conformations and DNA interactions may uniquely impact NBTIs compared to fluoroquinolones.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Topoisomerase Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerases, Type II/metabolism , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/enzymology
2.
J Antimicrob Chemother ; 70(6): 1650-8, 2015.
Article in English | MEDLINE | ID: mdl-25645206

ABSTRACT

OBJECTIVES: Pseudomonas aeruginosa is an important nosocomial pathogen that can cause a wide range of infections resulting in significant morbidity and mortality. Avibactam, a novel non-ß-lactam ß-lactamase inhibitor, is being developed in combination with ceftazidime and has the potential to be a valuable addition to the treatment options for the infectious diseases practitioner. We compared the frequency of resistance development to ceftazidime/avibactam in three P. aeruginosa strains that carried derepressed ampC alleles. METHODS: The strains were incubated in the presence of increasing concentrations of ceftazidime with a fixed concentration (4 mg/L) of avibactam to calculate the frequency of spontaneous resistance. The mutants were characterized by WGS to identify the underlying mechanism of resistance. A representative mutant protein was characterized biochemically. RESULTS: The resistance frequency was very low in all strains. The resistant variants isolated exhibited ceftazidime/avibactam MIC values that ranged from 64 to 256 mg/L. All of the mutants exhibited changes in the chromosomal ampC gene, the majority of which were deletions of various sizes in the Ω-loop region of AmpC. The mutant enzyme that carried the smallest Ω-loop deletion, which formed a part of the avibactam-binding pocket, was characterized biochemically and found to be less effectively inhibited by avibactam as well as exhibiting increased hydrolysis of ceftazidime. CONCLUSIONS: The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/biosynthesis , Ceftazidime/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Selection, Genetic , beta-Lactam Resistance , beta-Lactamases/biosynthesis , Bacterial Proteins/genetics , Drug Combinations , Humans , Microbial Sensitivity Tests , Mutation Rate , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...