Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(30): 11910-11919, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37458504

ABSTRACT

Details of the carbothermic reduction/nitridation to synthesize hafnium nitride (HfN) and hafnium carbide (HfC) are scarce in the literature. Therefore, this current study was carried out to evaluate two pathways for synthesizing these two refractory materials: direct nitridation and carbothermic reduction/nitridation. Two mixtures of hafnium dioxide and carbon with C/HfO2 molar ratios of 2.15 and 3.1 were nitridized directly using flowing nitrogen gas at elevated temperatures (1300-1700 °C). The 3.1 C/HfO2 molar ratio mixture was also carbothermically reduced under flowing argon gas to synthesize HfC, which was converted into HfN by introducing a nitridation step under both N2(g) and N2(g)-10% H2(g). X-ray diffraction results showed the formation of HfN at 1300 and 1400 °C and HfC1-yNy at ≥1400 °C under direct nitridation of samples using a C/HfO2 molar ratio of 2.15. These phase analysis data together with lower lattice strain and greater crystallite sizes of HfC1-yNy that formed at higher temperatures suggested that the HfC1-yNy phase is preferred over HfN at those temperatures. Carbothermic reduction of 3.1 C/HfO2 molar ratio samples under an inert atmosphere produced single-phased HfC with no significant levels of dissolved oxygen. Carbothermic reduction nitridation made two phases of different carbon levels (HfC1-yNy and HfC1-y'Ny', where y' < y), while direct nitridation produced a single HfC1-yNy phase under both N2 and N2-10% H2 cover gas environments.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 397-407, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34096522

ABSTRACT

Characterization of the thermal expansion in the rare earth di-titanates is important for their use in high-temperature structural and dielectric applications. Powder samples of the rare earth di-titanates R2Ti2O7 (or R2O3·2TiO2), where R = La, Pr, Nd, Sm, Gd, Dy, Er, Yb, Y, which crystallize in either the monoclinic or cubic phases, were synthesized for the first time by the solution-based steric entrapment method. The three-dimensional thermal expansions of these polycrystalline powder samples were measured by in situ synchrotron powder diffraction from 25°C to 1600°C in air, nearly 600°C higher than other in situ thermal expansion studies. The high temperatures in synchrotron experiments were achieved with a quadrupole lamp furnace. Neutron powder diffraction measured the monoclinic phases from 25°C to 1150°C. The La2Ti2O7 member of the rare earth di-titanates undergoes a monoclinic to orthorhombic displacive transition on heating, as shown by synchrotron diffraction in air at 885°C (864°C-904°C) and neutron diffraction at 874°C (841°C-894°C).

3.
Rev Sci Instrum ; 90(1): 015109, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709210

ABSTRACT

This study examines thermal gradients in ceramic oxide spheroids being aerodynamically levitated in a conical nozzle levitator (CNL) system equipped with a CO2 laser (10.6 µm wavelength). The CNL system is a versatile piece of equipment that can easily be coupled with advanced thermophysical and thermochemical measuring devices, such as diffraction/scattering (X-ray and neutron), nuclear magnetic resonance, and calorimetry, for the analysis of bulk spheroidal solids and liquids. The thermal gradients of a series of single crystal, polycrystalline solids, and liquid spheroids have been measured spatially in the CNL system, by means of a disappearing filament pyrometer (800-3000 °C) and by X-ray diffraction with reference to an internal standard (Pt: 800-1600 °C). The thermal gradient in a levitated sample being heated by a laser from the top can be minimized by: (i) maximizing the sphericity, (ii) maximizing the density, and (iii) minimizing microstructural features. A spheroid with these properties can be manufactured via machining a perfect sphere from a highly dense, chemically and phase pure pellet. These properties promote rotation of the sample about multiple axes in the air stream, enabling homogeneous heating. This homogeneous heating is the dominant factor in reducing thermal gradients in solid state samples. It was found that the thermal gradient in an ∼3 mm diameter solid sample could be reduced from 1000 °C to 30 °C, by having a perfectly spherical shape that could rotate on multiple axes in a high velocity gas stream (∼1500-2000 cm3/min). These findings will allow accurate thermophysical and thermochemical property measurements of solids in situ at high temperatures, using the CNL system.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 227-234, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-32830748

ABSTRACT

Zr6Ta2O17, Hf6Nb2O17 and Hf6Ta2O17 crystal structure solutions have been solved using synchrotron X-ray powder diffraction and neutron powder diffraction in conjunction with simulated annealing, charge flipping and Rietveld refinement. These structures have been shown to be isomorphous with the Zr6Nb2O17 superstructure, leading to the classification of the A6B2O17 (A = Zr, Hf; B = Nb, Ta) orthorhombic compound family with symmetry Ima2 (No. 46). The asymmetrical structural units of cation-centred oxygen polyhedra used to build the structure are as follows: (i) one set of symmetry-equivalent six-coordinated polyhedra, (ii) three sets of symmetry-equivalent seven-coordinated polyhedra and (iii) one set of symmetry-equivalent eight-coordinated polyhedra. The potential for cation order and disorder was discussed in terms of cation atomic number contrast in X-ray and neutron powder diffraction as well as the bond valence method. In addition, the structural mechanisms for experimentally observed compositional variations within the solid solution range can be attributed to the addition or removal of a set of symmetry-equivalent seven-coordinated polyhedra accompanied by corresponding oxygen tilts within the A6B2O17 structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...