Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Allergy Clin Immunol ; 118(6): 1369-74, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17157668

ABSTRACT

BACKGROUND: The green tea flavonoid, epigallocatechin gallate (EGCG), has been proposed to have an anti-HIV-1 effect by preventing the binding of HIV-1 glycoprotein (gp) 120 to the CD4 molecule on T cells. OBJECTIVE: To demonstrate that EGCG binds to the CD4 molecule at the gp120 attachment site and inhibits gp120 binding at physiologically relevant levels, thus establishing EGCG as a potential therapeutic treatment for HIV-1 infection. METHODS: Nuclear magnetic resonance spectroscopy was used to examine the binding of EGCG and control, (-)-catechin, to CD4-IgG2 (PRO 542). Gp120 binding to human CD4+ T cells was analyzed by flow cytometry. RESULTS: Addition of CD4 to EGCG produced a linear decrease in nuclear magnetic resonance signal intensity from EGCG but not from the control, (-)-catechin. In saturation transfer difference experiments, addition of 5.8 micromol/L CD4 to 310 micromol/L EGCG produced strong saturation at the aromatic rings of EGCG, but identical concentrations of (-)-catechin produced much smaller effects, implying EGCG/CD4 binding strong enough to reduce gp120/CD4 binding substantially. Molecular modeling studies suggested a binding site for EGCG in the D1 domain of CD4, the pocket that binds gp120. Physiologically relevant concentrations of EGCG (0.2 micromol/L) inhibited binding of gp120 to isolated human CD4+ T cells. CONCLUSION: We have demonstrated clear evidence of high-affinity binding of EGCG to the CD4 molecule with a Kd of approximately 10 nmol/L and inhibition of gp120 binding to human CD4+ T cells. CLINICAL IMPLICATIONS: Epigallocatechin gallate has potential use as adjunctive therapy in HIV-1 infection.


Subject(s)
CD4 Antigens/metabolism , Catechin/analogs & derivatives , HIV-1 , Protease Inhibitors/metabolism , Binding Sites , CD4 Immunoadhesins/metabolism , Catechin/chemistry , Catechin/metabolism , Flavonoids , HIV Envelope Protein gp120/metabolism , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Phenols , Polyphenols , Receptors, HIV/metabolism , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...