Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 26(7): 1047-1061, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839979

ABSTRACT

The lysosomal degradation of macromolecules produces diverse small metabolites exported by specific transporters for reuse in biosynthetic pathways. Here we deorphanized the major facilitator superfamily domain containing 1 (MFSD1) protein, which forms a tight complex with the glycosylated lysosomal membrane protein (GLMP) in the lysosomal membrane. Untargeted metabolomics analysis of MFSD1-deficient mouse lysosomes revealed an increase in cationic dipeptides. Purified MFSD1 selectively bound diverse dipeptides, while electrophysiological, isotope tracer and fluorescence-based studies in Xenopus oocytes and proteoliposomes showed that MFSD1-GLMP acts as a uniporter for cationic, neutral and anionic dipeptides. Cryoelectron microscopy structure of the dipeptide-bound MFSD1-GLMP complex in outward-open conformation characterized the heterodimer interface and, in combination with molecular dynamics simulations, provided a structural basis for its selectivity towards diverse dipeptides. Together, our data identify MFSD1 as a general lysosomal dipeptide uniporter, providing an alternative route to recycle lysosomal proteolysis products when lysosomal amino acid exporters are overloaded.


Subject(s)
Dipeptides , Lysosomes , Lysosomes/metabolism , Animals , Dipeptides/metabolism , Oocytes/metabolism , Cryoelectron Microscopy , Mice , Xenopus laevis , Humans , Mice, Knockout , Molecular Dynamics Simulation , Symporters/metabolism , Symporters/genetics , Symporters/chemistry , Female , Transient Receptor Potential Channels
2.
J Med Chem ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691510

ABSTRACT

Metabotropic glutamate (mGlu) receptors play a key role in modulating most synapses in the brain. The mGlu7 receptors inhibit presynaptic neurotransmitter release and offer therapeutic possibilities for post-traumatic stress disorders or epilepsy. Screening campaigns provided mGlu7-specific allosteric modulators as the inhibitor XAP044 (Gee et al. J. Biol. Chem. 2014). In contrast to other mGlu receptor allosteric modulators, XAP044 does not bind in the transmembrane domain but to the extracellular domain of the mGlu7 receptor and not at the orthosteric site. Here, we identified the mode of action of XAP044, combining synthesis of derivatives, modeling and docking experiments, and mutagenesis. We propose a unique mode of action of these inhibitors, preventing the closure of the Venus flytrap agonist binding domain. While acting as a noncompetitive antagonist of L-AP4, XAP044 and derivatives act as apparent competitive antagonists of LSP4-2022. These data revealed more potent XAP044 analogues and new possibilities to target mGluRs.

3.
Int J Neuropsychopharmacol ; 26(7): 513-521, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37343217

ABSTRACT

BACKGROUND: Evidence has accumulated demonstrating the existence of opioid receptor heteromers, and recent data suggest that targeting these heteromers could reduce opioid side effects while retaining therapeutic effects. Indeed, CYM51010 characterized as a MOR (mu opioid receptor)/DOR (delta opioid receptor) heteromer-preferring agonist promoted antinociception comparable with morphine but with less tolerance. In the perspective of developing these new classes of pharmacological agents, data on their putative side effects are mandatory. METHODS: Therefore, in this study, we investigated the effects of CYM51010 in different models related to drug addiction in mice, including behavioral sensitization, conditioned place preference and withdrawal. RESULTS: We found that, like morphine, CYM51010 promoted acute locomotor activity as well as psychomotor sensitization and rewarding effect. However, it induced less physical dependence than morphine. We also investigated the ability of CYM51010 to modulate some morphine-induced behavior. Whereas CYM51010 was unable to block morphine-induced physical dependence, it blocked reinstatement of an extinguished morphine induced-conditioned place preference. CONCLUSIONS: Altogether, our results reveal that targeting MOR-DOR heteromers could represent a promising strategy to block morphine reward.


Subject(s)
Morphine , Receptors, Opioid, delta , Mice , Animals , Morphine/pharmacology , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu , Analgesics, Opioid/pharmacology , Reward
4.
Neurosci Lett ; 764: 135603, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33387661

ABSTRACT

Cocaine addiction is a serious health issue in Western countries. Despite the regular increase in cocaine consumption across the population, there is no specific treatment for cocaine addiction. Critical roles for glutamate neurotransmission in the rewarding effects of psychostimulants as well as relapse have been suggested and accumulating evidence indicates that targeting mGlu group III receptors could represent a promising strategy to develop therapeutic compounds to treat addiction. In this context, the aim of our study was to examine the effect of LSP2-9166, a mGlu4/mGlu7 receptor orthosteric agonist, on the motivation for cocaine intake. We used an intravenous self-administration paradigm in male Wistar rats as a reliable model of voluntary drug intake. We first evaluated the direct impact of cocaine on Grm4 and Grm7 gene expression. Voluntary cocaine intake under a fixed ratio schedule of injections induced an increase of both mGlu4 and mGlu7 receptor transcripts in nucleus accumbens and hippocampus. We then evaluated the ability of LSP2-9166 to affect cocaine self-administration under a progressive ratio schedule of reinforcement. We found that this compound inhibits the motivation to obtain the drug, although it induced a hypolocomotor effect which could biais motivation index. Our findings demonstrate that mGlu group III receptors represent new targets for decreasing motivation to self-administer cocaine.


Subject(s)
Aminobutyrates/pharmacology , Cocaine-Related Disorders/drug therapy , Motivation/drug effects , Receptors, Metabotropic Glutamate/agonists , Administration, Intravenous , Aminobutyrates/therapeutic use , Animals , Cocaine/administration & dosage , Cocaine/adverse effects , Cocaine-Related Disorders/psychology , Disease Models, Animal , Glutamic Acid/metabolism , Humans , Male , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/metabolism , Reinforcement, Psychology , Self Administration , Synaptic Transmission/drug effects
5.
J Med Chem ; 63(15): 8231-8249, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32608236

ABSTRACT

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 µM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Lysosomes/metabolism , Organic Anion Transporters/metabolism , Symporters/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , HeLa Cells , Humans , Ligands , Molecular Docking Simulation/methods , Protein Structure, Secondary , Rats
6.
Nat Commun ; 10(1): 5572, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804469

ABSTRACT

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors that operate at synapses. Macroscopic and single molecule FRET to monitor structural rearrangements in the ligand binding domain (LBD) of the mGluR7/7 homodimer revealed it to have an apparent affinity ~4000-fold lower than other mGluRs and a maximal activation of only ~10%, seemingly too low for activation at synapses. However, mGluR7 heterodimerizes, and we find it to associate with mGluR2 in the hippocampus. Strikingly, the mGluR2/7 heterodimer has high affinity and efficacy. mGluR2/7 shows cooperativity in which an unliganded subunit greatly enhances activation by agonist bound to its heteromeric partner, and a unique conformational pathway to activation, in which mGluR2/7 partially activates in the Apo state, even when its LBDs are held open by antagonist. High sensitivity and an unusually broad dynamic range should enable mGluR2/7 to respond to both glutamate transients from nearby release and spillover from distant synapses.


Subject(s)
Protein Conformation , Protein Multimerization , Receptors, Metabotropic Glutamate/chemistry , Animals , Glutamic Acid/metabolism , HEK293 Cells , Humans , Mice , Microscopy, Fluorescence , Patch-Clamp Techniques , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Synapses/genetics , Synapses/metabolism , Synapses/physiology
7.
Neurobiol Dis ; 129: 13-28, 2019 09.
Article in English | MEDLINE | ID: mdl-31051234

ABSTRACT

Finding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures. We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazole systemic injection), LSP2-9166 induces an anti-epileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found that LSP2-9166 reduces seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-seizure drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling.


Subject(s)
Aminobutyrates/pharmacology , Anticonvulsants/pharmacology , Hippocampus/drug effects , Receptors, Metabotropic Glutamate/agonists , Seizures/metabolism , Animals , Epilepsy/metabolism , Excitatory Amino Acid Agonists/pharmacology , Hippocampus/metabolism , Kindling, Neurologic/drug effects , Mice , Mice, Mutant Strains
8.
J Med Chem ; 61(5): 1969-1989, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29397723

ABSTRACT

A group III metabotropic glutamate (mGlu) receptor agonist (PCEP) was identified by virtual HTS. This orthosteric ligand is composed by an l-AP4-derived fragment that mimics glutamate and a chain that binds into a neighboring pocket, offering possibilities to improve affinity and selectivity. Herein we describe a series of derivatives where the distal chain is replaced by an aromatic or heteroaromatic group. Potent agonists were identified, including some with a mGlu4 subtype preference, e.g., 17m (LSP1-2111) and 16g (LSP4-2022). Molecular modeling suggests that aromatic functional groups may bind at either one of the two chloride regulatory sites. These agonists may thus be considered as particular bitopic/dualsteric ligands. 17m was shown to reduce GABAergic synaptic transmission at striatopallidal synapses. We now demonstrate its inhibitory effect at glutamatergic parallel fiber-Purkinje cell synapses in the cerebellar cortex. Although these ligands have physicochemical properties that are markedly different from typical CNS drugs, they hold significant therapeutic potential.


Subject(s)
Binding Sites , Receptors, Metabotropic Glutamate/agonists , Aminobutyrates/pharmacology , Animals , Glutamic Acid/chemistry , Humans , Ligands , Models, Molecular , Molecular Mimicry , Phosphinic Acids/pharmacology , Purkinje Cells/ultrastructure , Synapses/drug effects , Synaptic Transmission/drug effects
9.
Nat Commun ; 8: 14253, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181493

ABSTRACT

Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential 'on-off' switch of pDC activity with therapeutic potential.


Subject(s)
Amines/pharmacology , Dendritic Cells/metabolism , Receptors, CXCR4/metabolism , Ammonium Compounds/chemistry , Animals , Dendritic Cells/drug effects , HIV/drug effects , HIV/physiology , Histamine/chemistry , Histamine/pharmacology , Humans , Imidazoles/pharmacology , Interferon Type I/metabolism , Mice , Orthomyxoviridae/physiology , Receptors, Histamine/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology
10.
Org Biomol Chem ; 7(4): 706-16, 2009 Feb 21.
Article in English | MEDLINE | ID: mdl-19194586

ABSTRACT

Stable, water-soluble aminosugar staurosporine, K-252a and rebeccamycin analogs have been prepared by nucleophilic opening of C(2)-symmetric N-activated bis-aziridines by bis-indolylmaleimides. This divergent strategy allows the synthesis of unsymmetrical substituted derivatives and provides an easy access to the piperidine and pyrrolidine analogs.


Subject(s)
Aziridines/chemistry , Staurosporine/analogs & derivatives , Aza Compounds , Drug Stability , Piperidines , Pyrrolidines , Solubility , Staurosporine/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...