Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36899806

ABSTRACT

Increasing human-bear conflicts are a growing concern, and managers often assume bears in developed areas are food-conditioned. We examined the relationship between human-bear conflicts and food conditioning by analyzing isotopic values of hair from black bears (Ursus americanus floridanus) involved in research (n = 34) and conflicts (n = 45). We separated research bears into wild and developed subgroups based on the impervious surface within their home ranges and separated conflict bears based on observations of human food consumption (anthropogenic = observations; management = no observations). We initially assumed wild bears were not food conditioned and anthropogenic bears were. However, using isotopic values, we classified 79% of anthropogenic bears and 8% of wild bears as food conditioned. Next, we assigned these bears to the appropriate food conditioned category and used the categorizations as a training set to classify developed and management bears. We estimated that 53% of management bears and 20% of developed bears were food conditioned. Only 60% of bears captured within or using developed areas showed evidence of food conditioning. We also found that δ13C values were a better predictor of anthropogenic foods in a bear's diet than δ15N values. Our results indicate that bears in developed areas are not necessarily food conditioned and caution against management actions based on limited observations of bear behavior.

2.
PLoS One ; 12(7): e0181849, 2017.
Article in English | MEDLINE | ID: mdl-28738077

ABSTRACT

Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.


Subject(s)
Ursidae/growth & development , Ursidae/genetics , Animals , Conservation of Natural Resources/methods , Ecosystem , Florida , Genetic Variation/genetics , Genetics, Population/methods , Humans , Population Density , Population Dynamics/statistics & numerical data , Spatial Analysis
3.
Conserv Biol ; 20(1): 155-62, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16909668

ABSTRACT

Corridors may mitigate the adverse effects of habitat fragmentation by restoring or maintaining connectivity between disjunct populations. The efficacy of corridors for large carnivores, however has rarely been evaluated objectively. We used noninvasive sampling, microsatellite analysis, and population assignment tests to evaluate the effectiveness of a regional corridor in connecting two Florida black bear (Ursus americanus floridanus) populations (Osceola and Ocala). Bear movement was predominantly unidirectional, with a limited mixing of individuals from the two populations in one area of the corridor We also documented bears in Osceola that were genetically assigned to Ocala and bears in Osceola that may be offspring from an Osceola-Ocala mating. Our results indicate that the Osceola-Ocala corridor is functional and provides a conduit for gene flow between these populations. Human development, however may hinder the use of the Osceola-Ocala corridor by bears. The noninvasive sampling and genetic methods we used provide a means of evaluating corridor effectiveness that can help identify linkages necessary for maintaining metapopulation structure and population viability.


Subject(s)
Conservation of Natural Resources , Demography , Ecosystem , Environment , Ursidae/physiology , Animals , Female , Florida , Genetics, Population , Geography , Male , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...