Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mob DNA ; 5(1): 30, 2014.
Article in English | MEDLINE | ID: mdl-25598847

ABSTRACT

BACKGROUND: The active human mobile element, long interspersed element 1 (L1) currently populates human genomes in excess of 500,000 copies per haploid genome. Through its mobility via a process called target primed reverse transcription (TPRT), L1 mobilization has resulted in over 100 de novo cases of human disease and has recently been associated with various cancer types. Large advances in high-throughput sequencing (HTS) technology have allowed for an increased understanding of the role of L1 in human cancer; however, researchers are still limited by the ability to validate potentially rare L1 insertion events detected by HTS that may occur in only a small fraction of tumor cells. Additionally, HTS detection of rare events varies greatly as a function of read depth, and new tools for de novo element discovery are needed to fill in gaps created by HTS. RESULTS: We have employed droplet digital PCR (ddPCR) to detect rare L1 loci in mosaic human genomes. Our assay allows for the detection of L1 insertions as rare as one cell in every 10,000. CONCLUSIONS: ddPCR represents a robust method to be used alongside HTS techniques for detecting, validating and quantitating rare L1 insertion events in tumors and other tissues.

2.
Proc Natl Acad Sci U S A ; 107(37): 16190-5, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20736348

ABSTRACT

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted characterization of the phylogenetic affinities of this eukaryotic microbe. Using short-subunit ribosomal DNA (SSU rDNA) sequences as key evidence, with sequence identity confirmed by fluorescence in situ hybridization (FISH), we show that Nephromyces, originally classified as a chytrid fungus, is actually an apicomplexan. Inferences from rDNA data are further supported by the several apicomplexan-like structural features in Nephromyces, including especially the strong resemblance of Nephromyces infective stages to apicomplexan sporozoites. The striking emergence of the mutualistic Nephromyces from a quintessentially parasitic clade accentuates the promise of this organism, and the three-partner symbiosis of which it is a part, as a model for probing the factors underlying the evolution of mutualism, pathogenicity, and infectious disease.


Subject(s)
Apicomplexa/physiology , Symbiosis , Urochordata/physiology , Animals , Apicomplexa/ultrastructure , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , Toxoplasma/physiology , Urochordata/ultrastructure
3.
J Vis Exp ; (38)2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20393449

ABSTRACT

The use of siRNA mediated gene knockdown is continuing to be an important tool in studies of gene expression. siRNA studies are being conducted not only to study the effects of downregulating single genes, but also to interrogate signaling pathways and other complex interaction networks. These pathway analyses require both the use of relevant cellular models and methods that cause less perturbation to the cellular physiology. Electroporation is increasingly being used as an effective way to introduce siRNA and other nucleic acids into difficult to transfect cell lines and primary cells without altering the signaling pathway under investigation. There are multiple critical steps to a successful siRNA experiment, and there are ways to simplify the work while improving the data quality at several experimental stages. To help you get started with your siRNA mediated gene knockdown project, we will demonstrate how to perform a pathway study complete from collecting and counting the cells prior to electroporation through post transfection real-time PCR gene expression analysis. The following study investigates the role of the transcriptional activator STAT6 in IL-4 dependant gene expression of CCL17 in a Burkitt lymphoma cell line (Namalwa). The techniques demonstrated are useful for a wide range of siRNA-based experiments on both adherent and suspension cells. We will also show how to streamline cell counting with the TC10 automated cell counter, how to electroporate multiple samples simultaneously using the MXcell electroporation system, and how to simultaneously assess RNA quality and quantity with the Experion automated electrophoresis system.


Subject(s)
Burkitt Lymphoma/genetics , Cell Count/instrumentation , Gene Knockdown Techniques/instrumentation , Gene Knockdown Techniques/methods , Interleukin-4/genetics , RNA, Small Interfering/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Electroporation/instrumentation , Electroporation/methods , Humans , Interleukin-4/biosynthesis , RNA, Small Interfering/administration & dosage
4.
J Vis Exp ; (35)2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20057352

ABSTRACT

It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer (Bio-Rad) were specifically developed to easily transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells. We will demonstrate how to perform a simple experiment to quickly identify the best electroporation conditions. We will demonstrate how to run several samples through a range of electroporation conditions so that an experiment can be conducted at the same time as optimization is performed. We will also show how optimal conditions identified using 96-well electroporation plates can be used with standard electroporation cuvettes, facilitating the switch from electroporation plates to electroporation cuvettes while maintaining the same electroporation efficiency. In the video, we will also discuss some of the key factors that can lead to the success or failure of electroporation experiments.


Subject(s)
Electroporation/instrumentation , Electroporation/methods , Transfection/instrumentation , Transfection/methods , Animals , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Microscopy, Fluorescence , Plasmids/administration & dosage , Plasmids/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
5.
Microbiology (Reading) ; 143 ( Pt 8): 2807-2815, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9274034

ABSTRACT

Transmission of Bartonella species from ectoparasites to the mammalian host involves adaptation to thermal and other forms of stress. In order to better understand this process, the heat shock response of Bartonella henselae and Bartonella quintana was studied. Cellular proteins synthesized after shift to higher temperatures were intrinsically labelled with [25S]methionine and analysed by gel electrophoresis and fluorography. The apparent molecular masses of three of the major heat shock proteins produced by the two Bartonella species were virtually identical, migrating at 70, 60 and 10 kDa. A fourth major heat shock protein was larger in B. quintana (20 kDa) than in B. henselae (17 kDa). The maximum heat shock response in B. quintana and B. henselae was observed at 39 degrees C and 42 degrees C, respectively. The groEL genes of both Bartonella species were amplified, sequenced and compared to other known groEL genes. The phylogenetic tree based on the groEL alignment places B. quintana and B. henselae in a monophyletic group with Bartonella bacilliformis. The deduced amino acid sequences of Bartonella GroEL homologues contain signature sequences that are uniquely shared by members of the Gram-negative alpha-purple subdivision of bacteria, which live within eukaryotic cells. Recombinant His6-GroEL fusion proteins were expressed in Escherichia coli to generate specific rabbit antisera. The GroEL antisera were used to confirm the identity of the 60 kDa Bartonella heat shock protein. These studies provide a foundation for evaluating the role of the heat shock response in the pathogenesis of Bartonella infection.


Subject(s)
Bartonella henselae/physiology , Bartonella quintana/physiology , Chaperonin 60/genetics , Heat-Shock Response , Amino Acid Sequence , Base Sequence , Chaperonin 60/classification , Chaperonin 60/immunology , Genes, Bacterial , Genetic Code , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Precipitin Tests , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...