Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Pathol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682538

ABSTRACT

OBJECTIVES: Biotin causes negative interference with thyroglobulin measurement using the Access thyroglobulin assay. Recently, Beckman reformulated the thyroglobulin assay to overcome biotin interference. We investigated the effect of biotin on both current and newly formulated assays. METHODS: Four serum pools were prepared using specimens containing various amounts of thyroglobulin. Then aliquots of each pool were supplemented with various amounts of biotin, and thyroglobulin concentrations were measured by both the current and the new assays. In addition, 3 volunteers ingested 10 mg biotin, and specimens were drawn before and 2 hours after taking biotin. Thyroglobulin concentrations before and 2 hours after taking biotin were measured by both assays. RESULTS: In the presence of biotin, thyroglobulin concentrations were reduced significantly using the current assay, but no significant change was observed using the newly formulated assay. We observed similar results in vivo. CONCLUSIONS: The newly formulated thyroglobulin assay by Beckman is free from biotin interference.

3.
Sci Rep ; 14(1): 355, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172612

ABSTRACT

While obesity is a risk factor for post-acute sequelae of SARS-CoV-2 infection (PASC, "long-COVID"), the mechanism(s) underlying this phenomenon remains poorly understood. To address this gap in knowledge, we performed a 6-week longitudinal study to examine immune activity and gut microbiome dysbiosis in post-acute stage patients recovering from SARS-CoV-2 infection. Self-reported symptom frequencies and blood samples were collected weekly, with plasma assessed by ELISA and Luminex for multiple biomarkers and immune cell profiling. DNA from stool samples were collected at the early stage of recovery for baseline assessments of gut microbial composition and diversity using 16S-based metagenomic sequencing. Multiple regression analyses revealed obesity-related PASC linked to a sustained proinflammatory immune profile and reduced adaptive immunity, corresponding with reduced gut microbial diversity. In particular, enhanced signaling of the high mobility group box 1 (HMGB1) protein was found to associate with this dysregulation, with its upregulated levels in plasma associated with significantly impaired viral neutralization that was exacerbated with obesity. These findings implicate HMGB1 as a candidate biomarker of PASC, with potential applications for risk assessment and targeted therapies.


Subject(s)
COVID-19 , HMGB1 Protein , Microbiota , Humans , COVID-19/complications , Disease Progression , HMGB1 Protein/genetics , Longitudinal Studies , Obesity/complications , Post-Acute COVID-19 Syndrome , SARS-CoV-2
4.
Front Genet ; 14: 1125217, 2023.
Article in English | MEDLINE | ID: mdl-37152987

ABSTRACT

Introduction: Native Hawaiian and other Pacific Islander (NHPI) populations experience higher rates of immunometabolic diseases compared to other racial-ethnic groups in Hawaii. As annual NHPI mortality rates for suicide and type 2 diabetes mellitus (T2DM) exceed those of the state as a whole, understanding the social and biological mechanisms underlying these disparities are urgently needed to enable preventive strategies. Methods: A community-based approach was used to investigate the immunoepigenetic-gut microbiome axis in an NHPI-enriched cohort of Oahu residents (N = 68). Self-esteem (SE) data was collected using a modified Rosenberg self-esteem (SE) assessment as a proxy measure for mental wellbeing in consideration for cultural competency. T2DM status was evaluated using point-of-care A1c (%) tests. Stool samples were collected for 16s-based metagenomic sequencing analyses. Plasma from blood samples were isolated by density-gradient centrifugation. Peripheral blood mononuclear cells (PBMCs) were collected from the same samples and enriched for monocytes using negative selection techniques. Flow-cytometry was used for immunoprofiling assays. Monocyte DNA was extracted for Illumina EPIC array-based methylation analysis. Results: Compared to individuals with normal SE (NSE), those with low SE (LSE) exhibited significantly higher plasma concentrations (pg/ml) of proinflammatory cytokines IL-8 (p = 0.051) and TNF-α (p = 0.011). Metagenomic analysis revealed that the relative abundance (%) of specific gut bacteria significantly differed between SE groups - some of which directly correlated with SE scores. Gene ontology analysis revealed that 104 significantly differentially methylated loci (DML) between SE groups were preferentially located at genes involved in immunometabolic processes. Horvath clock analyses indicated epigenetic age (Epi-Age) deceleration in individuals with LSE and acceleration in individuals with NSE (p = 0.042), yet was not reproduced by other clocks. Discussion: These data reveal novel differences in the immunoepigenetic-gut microbiome axis with respect to SE, warranting further investigation into its relationship to brain activity and mental health in NHPI. Unexpected results from Epi-Age analyses warrant further investigation into the relationship between biological age and disparate health outcomes among the NHPI population. The modifiable component of epigenetic processes and the gut microbiome makes this axis an attractive target for potential therapeutics, biomarker discovery, and novel prevention strategies.

5.
Front Cell Infect Microbiol ; 12: 1035641, 2022.
Article in English | MEDLINE | ID: mdl-36619744

ABSTRACT

Native Hawaiians and Pacific Islanders (NHPIs) suffer from higher prevalence of and mortality to type 2 diabetes mellitus (T2DM) than any other major race/ethnic group in Hawaii. Health inequities in this indigenous population was further exacerbated by the SARS-CoV-2 pandemic. T2DM progression and medical complications exacerbated by COVID-19 are partially regulated by the gut microbiome. However, there is limited understanding of the role of gut bacteria in the context of inflammation-related diseases of health disparities including T2DM and obesity. To address these gaps, we used a community-based research approach from a cohort enriched with NHPI residents on the island of Oahu, Hawaii (N=138). Gut microbiome profiling was achieved via 16s rDNA metagenomic sequencing analysis from stool DNA. Gut bacterial capacity for butyrate-kinase (BUK)-mediated fiber metabolism was assessed using quantitative PCR to measure the abundance of BUK DNA and RNA relative to total bacterial load per stool sample. In our cohort, age positively correlated with hemoglobin A1c (%; R=0.39; P<0.001) and body mass index (BMI; R=0.28; P<0.001). The relative abundance of major gut bacterial phyla significantly varied across age groups, including Bacteroidetes (P<0.001), Actinobacteria (P=0.007), and Proteobacteria (P=0.008). A1c was negatively correlated with the relative levels of BUK DNA copy number (R=-0.17; P=0.071) and gene expression (R=-0.33; P=0.003). Interestingly, we identified specific genera of gut bacteria potentially mediating the effects of diet on metabolic health in this cohort. Additionally, α-diversity among gut bacterial genera significantly varied across T2DM and BMI categories. Together, these results provide insight into age-related differences in gut bacteria that may influence T2DM and obesity in NHPIs. Furthermore, we observed overlapping patterns between gut bacteria and T2DM risk factors, indicating more nuanced, interdependent interactions among these factors as partial determinants of health outcomes. This study adds to the paucity of NHPI-specific data to further elucidate the biological characteristics associated with pre-existing health inequities in this racial/ethnic group that is significantly underrepresented in biomedical research.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Obesity , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/microbiology , Glycated Hemoglobin , Hawaii/epidemiology , Native Hawaiian or Other Pacific Islander , Obesity/epidemiology , Obesity/microbiology
6.
Front Neurosci ; 16: 1023665, 2022.
Article in English | MEDLINE | ID: mdl-36817099

ABSTRACT

Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods: We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results: Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion: These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...