Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Control Release ; 362: 536-547, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37648082

ABSTRACT

Lipid nanoparticles (LNP) have been instrumental in the success of mRNA vaccines and have opened up the field to a new wave of therapeutics. However, what is ahead beyond the LNP? The approach herein used a nanoparticle containing a blend of Spike, Membrane and Envelope antigens complexed for the first time with the RALA peptide (RALA-SME). The physicochemical characteristics and functionality of RALA-SME were assessed. With >99% encapsulation, RALA-SME was administered via intradermal injection in vivo, and all three antigen-specific IgG antibodies were highly significant. The IgG2a:IgG1 ratio were all >1.2, indicating a robust TH1 response, and this was further confirmed with the T-Cell response in mice. A complete safety panel of markers from mice were all within normal range, supported by safety data in hamsters. Vaccination of Syrian Golden hamsters with RALA-SME derivatives produced functional antibodies capable of neutralising SARS-CoV-2 from both Wuhan-Hu-1 and Omicron BA.1 lineages after two doses. Antibody levels increased over the study period and provided protection from disease-specific weight loss, with inhibition of viral migration down the respiratory tract. This peptide technology enables the flexibility to interchange and add antigens as required, which is essential for the next generation of adaptable mRNA vaccines.

2.
PLoS One ; 16(4): e0250187, 2021.
Article in English | MEDLINE | ID: mdl-33831107

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0054211.].

3.
Int J Pharm ; 596: 120223, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33508341

ABSTRACT

RALA is a cationic amphipathic peptide which has shown great promise as an efficient, multifunctional delivery system for the delivery of nucleic acids. Rational peptide design was utilised in this study to understand the essential amino acids required for delivery and if any improvements to the RALA peptide could be made. Six amphipathic peptides were synthesised with strategic sequences and amino acid substitutions to reduce peptide sequence, while maintaining the functional characteristics of RALA including amphipathicity, alpha-helicity and pH responsiveness for endosomal escape. Data demonstrated that all six peptides complexed pEGFP-N1 to produce cationic nanoparticles <200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for cellular uptake and endosomal escape. Pep2, produced nanoparticles with similar characteristics and transfection efficiency to the parent peptide, RALA. However, Pep2 had issues with toxicity and a lack of pH-responsive alpha-helcity. Therefore, RALA remains the superior sequence for non-toxic gene delivery.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Gene Transfer Techniques , Genetic Therapy , Transfection
4.
J Control Release ; 330: 1288-1299, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33227336

ABSTRACT

The design of a non-viral gene delivery system that can release a functional nucleic acid at the intracellular destination site is an exciting but also challenging proposition. The ideal gene delivery vector must be non-toxic, non-immunogenic, overcome extra- and intra-cellular barriers, protect the nucleic acid cargo from degradation with stability over a range of temperatures. A new 15 amino acid linear peptide termed CHAT was designed in this study with the goal of delivering DNA with high efficiency into cells in vitro and tissues in vivo. Rational design involved incorporation of key amino acids including arginine for nucleic acid complexation and cellular uptake, tryptophan to enhance hydrophobic interaction with cell membranes, histidine to facilitate endosomal escape and cysteine for stability and controlled cargo release. Six linear peptides were synthesised with strategic sequences and amino acid substitutions. Data demonstrated that all six peptides complexed pDNA to produce cationic nanoparticles less than 200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for endosomal escape. Peptide 4, now termed CHAT, was non-cytotoxic, traversed the plasma membrane of breast and prostate cancer cell lines, and elicited reporter-gene expression following intra-tumoural and intravenous delivery in vivo. CHAT presents an exciting new peptide for the delivery of nucleic acid therapeutics.


Subject(s)
Cell-Penetrating Peptides , Gene Transfer Techniques , Genetic Therapy , Plasmids , Transfection
5.
Cardiovasc Res ; 116(2): 393-405, 2020 02 01.
Article in English | MEDLINE | ID: mdl-30937452

ABSTRACT

AIMS: Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS: In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION: Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.


Subject(s)
Endothelial Progenitor Cells/transplantation , Ischemia/surgery , Muscle, Skeletal/blood supply , NADPH Oxidase 4/metabolism , Neovascularization, Physiologic , Animals , Cell Movement , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Endothelial Progenitor Cells/enzymology , Fetal Blood/cytology , Hindlimb , Humans , Ischemia/enzymology , Ischemia/genetics , Ischemia/physiopathology , Mice, Inbred NOD , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Recovery of Function , Signal Transduction
6.
Br J Cancer ; 122(3): 361-371, 2020 02.
Article in English | MEDLINE | ID: mdl-31772325

ABSTRACT

BACKGROUND: ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. METHODS: In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). RESULTS: ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. CONCLUSION: FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Cell Differentiation/drug effects , Neoplastic Stem Cells/drug effects , Neovascularization, Pathologic/pathology , Ovarian Neoplasms/pathology , Peptides/pharmacology , Tacrolimus Binding Proteins , Animals , Carcinoma, Ovarian Epithelial/blood supply , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Female , Humans , Hyaluronan Receptors/drug effects , Hyaluronan Receptors/metabolism , In Vitro Techniques , Interleukin-6/metabolism , Mice , Mice, SCID , Neovascularization, Pathologic/metabolism , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction , Tacrolimus Binding Proteins/drug effects , Tacrolimus Binding Proteins/metabolism , Xenograft Model Antitumor Assays
7.
Mol Ther Nucleic Acids ; 17: 891-906, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31476668

ABSTRACT

Autosomal dominantly inherited genetic disorders such as corneal dystrophies are amenable to allele-specific gene silencing with small interfering RNA (siRNA). siRNA delivered to the cornea by injection, although effective, is not suitable for a frequent long-term treatment regimen, whereas topical delivery of siRNA to the cornea is hampered by the eye surface's protective mechanisms. Herein we describe an attractive and innovative alternative for topical application using cell-penetrating peptide derivatives capable of complexing siRNA non-covalently and delivering them into the cornea. Through a rational design approach, we modified derivatives of a cell-penetrating peptide, peptide for ocular delivery (POD), already proved to diffuse into the corneal layers. These POD derivatives were able to form siRNA-peptide complexes (polyplexes) of size and ζ-potential similar to those reported able to undergo cellular internalization. Successful cytoplasmic release and gene silencing in vitro was obtained when an endosomal disruptor, chloroquine, was added. A palmitoylated-POD, displaying the best delivery properties, was covalently functionalized with trifluoromethylquinoline, an analog of chloroquine. This modified POD, named trifluoromethylquinoline-palmitoyl-POD (QN-Palm-POD), when complexed with siRNA and topically applied to the eye in vivo, resulted in up to 30% knockdown of luciferase reporter gene expression in the corneal epithelium. The methods developed within represent a valid standardized approach that is ideal for screening of a range of delivery formulations.

8.
Acta Biomater ; 96: 480-490, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31299353

ABSTRACT

Castrate resistant prostate cancer (CRPC) remains a major challenge for healthcare professionals. Immunotherapeutic approaches, including DNA vaccination, hold the potential to harness the host's own immune system to mount a cell-mediated, anti-tumour response, capable of clearing disseminated tumour deposits. These anti-cancer vaccines represent a promising strategy for patients with advanced disease, however, to date DNA vaccines have demonstrated limited efficacy in clinical trials, owing to the lack of a suitable DNA delivery system. This study was designed to evaluate the efficacy of a two-tier delivery system incorporating cationic RALA/pDNA nanoparticles (NPs) into a dissolvable microneedle (MN) patch for the purposes of DNA vaccination against prostate cancer. Application of NP-loaded MN patches successfully resulted in endogenous production of the encoded Prostate Stem Cell Antigen (PSCA). Furthermore, immunisation with RALA/pPSCA loaded MNs elicited a tumour-specific immune response against TRAMP-C1 tumours ex vivo. Finally, vaccination with RALA/pPSCA loaded MNs demonstrated anti-tumour activity in both prophylactic and therapeutic prostate cancer models in vivo. This is further evidence that this two-tier MN delivery system is a robust platform for prostate cancer DNA vaccination. STATEMENT OF SIGNIFICANCE: This research describes the development and utilisation of our unique microneedle (MN) DNA delivery system, which enables penetration through the stratum corneum and deposition of the DNA within the highly immunogenic skin layers via a dissolvable MN matrix, and facilitates cellular uptake via complexation of pDNA cargo into nanoparticles (NPs) with the RALA delivery peptide. We report for the first time on using the NP-MN platform to immunise mice with encoded Prostate Stem Cell Antigen (mPSCA) for prostate cancer DNA vaccination. Application of the NP-MN system resulted in local mPSCA expression in vivo. Furthermore, immunisation with the NP-MN system induced a tumour-specific cellular immune response, and inhibited the growth of TRAMP-C1 prostate tumours in both prophylactic and therapeutic challenge models in vivo.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines , Drug Delivery Systems , Nanoparticles/chemistry , Neoplasm Proteins/immunology , Prostatic Neoplasms, Castration-Resistant , Vaccination , Vaccines, DNA , Animals , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Cell Line, Tumor , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Male , Mice , Needles , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Vaccines, DNA/chemistry , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
9.
Oncotarget ; 9(79): 34889-34910, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30405882

ABSTRACT

Pimozide, an antipsychotic drug of the diphenylbutylpiperidine class, has been shown to suppress cell growth of breast cancer cells in vitro. In this study we further explore the inhibitory effects of this molecule in cancer cells. We found that Pimozide inhibited cell proliferation in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells and A549 lung cancer cells. Furthermore, we found that Pimozide also promoted apoptosis as demonstrated by cell cycle arrest and induction of double-strand DNA breaks but did not result in any effect in the non-transformed MCF10A breast cell line. In order to shed new lights into the molecular pathways affected by Pimozide, we show that Pimozide downregulated RAN GTPase and AKT at both protein and mRNA levels and inhibited the AKT signaling pathway in MDA-MB-231 breast cancer cells. Pimozide also inhibited the epithelial mesenchymal transition and cell migration and downregulated the expression of MMPs. Administration of Pimozide showed a potent in vivo antitumor activity in MDA-MB-231 xenograft animal model and reduced the number of lung metastases by blocking vascular endothelial growth factor receptor 2. Furthermore, Pimozide inhibited myofibroblast formation as evaluated by the reduction in α-smooth muscle actin containing cells. Thus, Pimozide might inhibit tumor development by suppressing angiogenesis and by paracrine stimulation provided by host reactive stromal cells. These results demonstrate a novel in vitro and in vivo antitumor activity of Pimozide against breast and lung cancer cells and provide the proof of concept for a putative Pimozide as a novel approach for cancer therapy.

10.
Sci Rep ; 8(1): 14502, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30267012

ABSTRACT

Amphibian venom-derived peptides have high potential in the field of anticancer drug discovery. We have isolated a novel Bowman-Birk proteinase inhibitor (BBI)-type peptide from the skin secretion of Pelophylax esculentus (PE) named PE-BBI, and evaluated its bio-functions and anti-cancer activity in vitro. PE-BBI is a heptadecapeptide with C-terminal amidation. The mRNA sequence and primary structure of PE-BBI were identified using RT-PCR and LC/MS, respectively. A trypsin inhibitory assay was used to characterize the serine proteinase inhibitory activity of synthetic PE-BBI. PE-BBI's myotropic activity was analyzed using isolated rat bladder and rat-tail artery smooth muscle tissues, and the anti-cancer ability of PE-BBI using human colorectal cancer cells. PE-BBI's mechanism of action was investigated using Discovery studio software. PE-BBI showed trypsin inhibitory activity (Ki = 310 ± 72 nM), strong myotropic activity, and cytotoxicity that were specific to cancer cells, and no side effect to normal epithelial cells. The docking stimulation showed that PE-BBI had high affinity to several members of human kallikrein related peptidase (KLK) family. This finding helps to enrich our understanding of BBI peptides' mode of action. Moreover, the data presented here validates frog secretions as sources of potential novel proteinase inhibitors for cancer treatment.


Subject(s)
Amphibian Venoms/enzymology , Anti-Infective Agents , Antineoplastic Agents , Peptides , Rana esculenta/metabolism , Serine Proteinase Inhibitors/isolation & purification , Amino Acid Sequence , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Base Sequence , Candida albicans/drug effects , Cell Line, Tumor , Colonic Neoplasms/pathology , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Female , Models, Molecular , Molecular Docking Simulation , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Protein Conformation , RNA, Messenger/genetics , Rats , Rats, Wistar , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/pharmacology , Skin/enzymology , Staphylococcus aureus/drug effects
11.
Cancer Nanotechnol ; 9(1): 5, 2018.
Article in English | MEDLINE | ID: mdl-29899810

ABSTRACT

BACKGROUND: Recent approvals of gene therapies by the FDA and the EMA for treatment of inherited disorders have further opened the door for assessment of nucleic acid pharmaceuticals for clinical usage. Arising from the presence of damaged or inappropriate DNA, cancer is a condition particularly suitable for genetic intervention. The RALA peptide has been shown to be a potent non-viral delivery platform for nucleic acids. This study examines the use of RALA to deliver a plasmid encoding inducible nitric oxide synthase (iNOS) as an anti-cancer treatment. METHODS: The physiochemical properties of the RALA/DNA nanoparticles were characterized via dynamic light scattering and transmission electron microscopy. The nanoparticles were labelled with fluorophores and tracked over time using confocal microscopy with orthogonal sections to determine cellular location. In vitro studies were employed to determine functionality of the nanoparticles both for pEGFP-N1 and CMV-iNOS. Nanoparticles were injected intravenously into C57/BL6 mice with blood and serum samples analysed for immune response. PC3-luc2M cells were injected into the left ventricle of SCID mice followed by treatment with RALA/CMV-iNOS nanoparticles to evaluate the tumour response in a metastatic model of prostate cancer. RESULTS: Functional cationic nanoparticles were produced with gene expression in PC-3 prostate cancer cells. Furthermore, repeated administrations of RALA/DNA nanoparticles into immunocompetent mice did not produce any immunological response: neutralization of the vector or release of inflammatory mediators. RALA/CMV-iNOS reduced the clonogenicity of PC-3 cells in vitro, and in an in vivo model of prostate cancer metastasis, systemically delivered RALA/CMV-iNOS significantly improved the survival of mice. CONCLUSION: These studies further validate RALA as a genetic cargo delivery vehicle and iNOS as a potent therapy for the treatment of cancer.

12.
Eur J Pharm Biopharm ; 127: 288-297, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29510205

ABSTRACT

Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 µg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer.


Subject(s)
DNA/administration & dosage , DNA/chemistry , Peptides/chemistry , Uterine Cervical Neoplasms/drug therapy , Vaccines, DNA/administration & dosage , Vaccines, DNA/chemistry , Animals , Biodegradable Plastics/chemistry , Cell Line , Drug Delivery Systems/methods , Female , Gene Transfer Techniques , Genetic Therapy/methods , Injections, Intramuscular/methods , Mice , Mice, Inbred C57BL , Microinjections/methods , Nanoparticles/chemistry , Needles , Plasmids/administration & dosage , Skin/metabolism , Swine , Transfection/methods , Vaccination/methods
13.
Oncotarget ; 8(24): 38251-38263, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28418910

ABSTRACT

Breast cancer is a leading cause of cancer-related deaths. Anemia is common in breast cancer patients and can be treated with blood transfusions or with recombinant erythropoietin (EPO) to stimulate red blood cell production. Clinical studies have indicated decreased survival in some groups of cancer patients treated with EPO. Numerous tumor cells express the EPO receptor (EPOR), posing a risk that EPO treatment would enhance tumor growth, but the mechanisms involved in breast tumor progression are poorly understood.Here, we have examined the functional role of the EPO-EPOR axis in pre-clinical models of breast cancer. EPO induced the activation of PI3K/AKT and MAPK pathways in human breast cancer cell lines. EPOR knockdown abrogated human tumor cell growth, induced apoptosis through Bim, reduced invasiveness, and caused downregulation of MYC expression. EPO-induced MYC expression is mediated through the PI3K/AKT and MAPK pathways, and overexpression of MYC partially rescued loss of cell proliferation caused by EPOR downregulation. In a xenotransplantation model, designed to simulate recombinant EPO therapy in breast cancer patients, knockdown of EPOR markedly reduced tumor growth.Thus, our experiments in vitro and in vivo demonstrate that functional EPOR signaling is essential for the tumor-promoting effects of EPO and underline the importance of the EPO-EPOR axis in breast tumor progression.


Subject(s)
Breast Neoplasms/pathology , Erythropoietin/pharmacology , Receptors, Erythropoietin/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Disease Progression , Erythropoietin/metabolism , Female , Heterografts , Humans , Mice , Mice, Nude , Signal Transduction/drug effects , Signal Transduction/physiology
14.
Sci Rep ; 7(1): 985, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428557

ABSTRACT

DNA replication is a critical step in cell proliferation. Overexpression of MCM2-7 genes correlated with poor prognosis in breast cancer patients. However, the roles of Cdc6 and Cdt1, which work with MCMs to regulate DNA replication, in breast cancers are largely unknown. In the present study, we have shown that the expression levels of Cdc6 and Cdt1 were both significantly correlated with an increasing number of MCM2-7 genes overexpression. Both Cdc6 and Cdt1, when expressed in a high level, alone or in combination, were significantly associated with poorer survival in the breast cancer patient cohort (n = 1441). In line with this finding, the expression of Cdc6 and Cdt1 was upregulated in breast cancer cells compared to normal breast epithelial cells. Expression of Cdc6 and Cdt1 was significantly higher in ER negative breast cancer, and was suppressed when ER signalling was inhibited either by tamoxifen in vitro or letrozole in human subjects. Importantly, breast cancer patients who responded to letrozole expressed significantly lower Cdc6 than those patients who did not respond. Our results suggest that Cdc6 is a potential prognostic marker and therapeutic target in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Up-Regulation , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , DNA Replication , Female , Gene Expression Regulation, Neoplastic , Humans , Letrozole , MCF-7 Cells , Mice , Nitriles/pharmacology , Prognosis , RAW 264.7 Cells , Receptors, Estrogen/metabolism , Survival Analysis , Tamoxifen/pharmacology , Triazoles/pharmacology
15.
Adv Healthc Mater ; 6(13)2017 Jul.
Article in English | MEDLINE | ID: mdl-28436620

ABSTRACT

To date, the mRNA delivery field has been heavily dominated by lipid-based systems. Reports on the use of nonlipid carriers for mRNA delivery in contrast are rare in the context of mRNA vaccination. This paper describes the potential of a cell-penetrating peptide containing the amphipathic RALA motif to deliver antigen-encoding mRNA to the immune system. RALA condenses mRNA into nanocomplexes that display acidic pH-dependent membrane disruptive properties. RALA mRNA nanocomplexes enable mRNA escape from endosomes and thereby allow expression of mRNA inside the dendritic cell cytosol. Strikingly, RALA mRNA nanocomplexes containing pseudouridine and 5-methylcytidine modified mRNA elicit potent cytolytic T cell responses against the antigenic mRNA cargo and show superior efficacy in doing so when compared to RALA mRNA nanocomplexes containing unmodified mRNA. RALA's unique sequence and structural organization are vital to act as mRNA vaccine vehicle, as arginine-rich peptide variants that lack the RALA motif show reduced mRNA complexation, impaired cellular uptake and lose the ability to transfect dendritic cells in vitro and to evoke T cell immunity in vivo.


Subject(s)
Antigens , CD8-Positive T-Lymphocytes/immunology , Cell-Penetrating Peptides , Drug Delivery Systems , Nanostructures/chemistry , RNA, Messenger , Amino Acid Motifs , Animals , Antigens/genetics , Antigens/pharmacology , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Cytoplasm/immunology , Endosomes/immunology , Female , Mice , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/pharmacology
16.
J Control Release ; 265: 57-65, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28428065

ABSTRACT

Nanoparticles (NPs) have undergone extensive investigation as drug delivery and targeting vehicles. NP delivery is often via the parenteral route, reliant on administration using hypodermic needles, which can be associated with patient compliance issues and safety concerns. In the recent past, the intradermal delivery of NPs, via novel dissolving microneedle (MN) arrays has garnered interest in the pharmaceutical community. However, published studies using this combinatorial approach have been limited, in that they have focussed on the use of in vitro and ex vivo models only. The current study was designed to answer the fundamental question of how such NPs are distributed in an in vivo murine model, following MN-mediated delivery. Rhodamine B (RhB) was employed as a model tracer dye to facilitate study of biodistribution. Following MN application, RhB was detected in the livers, kidneys, spleens and superficial parotid lymph nodes of the mice. Uptake into the lymphatics was of particular note, as it points towards the potential for utilisation of a minimally-invasive MN delivery strategy in controlled targeting of active drug substances and vaccines to the lymphatics. The use of such a delivery system could, following further development, have far-reaching benefits in enhancement of immunomodulatory and anti-cancer therapies. As a consequence, further investigation of MN/NP combinatorial delivery strategies is warranted.


Subject(s)
Coloring Agents/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Needles , Polyglycolic Acid/chemistry , Rhodamines/chemistry , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical , Coloring Agents/pharmacokinetics , Drug Delivery Systems , Excipients/chemistry , Female , Male , Mice , Microinjections , Polylactic Acid-Polyglycolic Acid Copolymer , Rhodamines/pharmacokinetics , Skin/metabolism , Solubility , Tissue Distribution
17.
Mol Ther Nucleic Acids ; 6: 249-258, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325291

ABSTRACT

This study aimed to determine the therapeutic benefit of a nanoparticular formulation for the delivery of inducible nitric oxide synthase (iNOS) gene therapy in a model of breast cancer metastasis. Nanoparticles comprising a cationic peptide vector, RALA, and plasmid DNA were formulated and characterized using a range of physiochemical analyses. Nanoparticles complexed using iNOS plasmids and RALA approximated 60 nm in diameter with a charge of 25 mV. A vector neutralization assay, performed to determine the immunogenicity of nanoparticles in immunocompetent C57BL/6 mice, revealed that no vector neutralization was evident. Nanoparticles harboring iNOS plasmids (constitutively active cytomegalovirus [CMV]-driven or transcriptionally regulated human osteocalcin [hOC]-driven) evoked iNOS protein expression and nitrite accumulation and impaired clonogenicity in the highly aggressive MDA-MB-231 human breast cancer model. Micrometastases of MDA-MB-231-luc-D3H1 cells were established in female BALB/c SCID mice by intracardiac delivery. Nanoparticulate RALA/CMV-iNOS or RALA/hOC-iNOS increased median survival in mice bearing micrometastases by 27% compared with controls and also provoked elevated blood nitrite levels. Additionally, iNOS gene therapy sensitized MDA-MB-231-luc-D3H1 tumors to docetaxel treatment. Studies demonstrated that systemically delivered RALA-iNOS nanoparticles have therapeutic potential for the treatment of metastatic breast cancer. Furthermore, detection of nitrite levels in the blood serves as a reliable biomarker of treatment.

18.
Sci China Life Sci ; 60(4): 386-396, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28120266

ABSTRACT

Prostate cancer is one of the most common cancers in men worldwide, and the number of diagnosed patients has dramatically increased in recent years. Currently, the clinical parameters used to diagnose prostate cancer, such as Gleason score, pathological tumor staging, and prostate-specific antigen (PSA) expression level, are considered insufficient to inform recommendation to guide clinical practice. Thus, identification of a novel biomarker is necessary. TWIST is one of the well-studied targets and is correlated with cancer invasion and metastasis in several human cancers. We have investigated two largest prostate cancer patient cohorts available in GEO database and found that TWIST expression is positive correlated with Gleason score and associated with poorer survival. By using a prostate cancer cohort and a prostate cancer cell line dataset, we have identified three potential downstream targets of TWIST, PPM1A, SRP72 and TBCB. TWIST's prognostic capacity is lost when the gene is mutated. Further investigation in the prostate cancer cohort revealed that gene expression of SERPINA, STX7, PDIA2, FMP5, GP1BB, VGLL4, KCNMA1, SHMT2, SAA4 and DIDO1 influence the prognostic significance of TWIST and vice versa. Importantly, eight out of these ten genes are prognostic indicator by itself. In conclusion, our study has further confirmed that TWIST is a prognostic marker in prostate cancer, identified its potential downstream targets and genes that could possibly give additional prognostic value to predict TWIST-mediated prostate cancer progression.


Subject(s)
Prostatic Neoplasms/genetics , Twist-Related Protein 1/genetics , Biomarkers, Tumor/metabolism , Cohort Studies , Gene Expression , Humans , Male , Neoplasm Invasiveness , Prognosis , Prostate-Specific Antigen/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , RNA, Messenger/genetics , Survival Analysis
19.
Oncotarget ; 8(7): 11144-11159, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28055976

ABSTRACT

CD133 has been shown to be an important stem cell factor that promotes glioma progression. However, the mechanism for CD133-mediated glioma progression has yet to be fully elucidated. In this study, we found that CD133 mRNA expression was a prognostic marker in three independent glioma patient cohorts, corroborating a putative role for CD133 in glioma progression. Importantly, we found that CD133 expression in glioma was highly correlated with the expression of HOX gene stem cell factors (HOXA5, HOXA7, HOXA10, HOXC4 and HOXC6). The expression of these HOX genes individually was significantly associated with survival. Interestingly, the prognostic significance of CD133 was dependent on the expression level of HOX genes, and vice versa. CD133 (p = 0.021) and HOXA7 (p = 0.001) were independent prognostic markers when the three glioma patient cohorts were combined (n = 231). Our results suggest that HOX genes may play a more important role in progression of glioma when CD133 expression is low. Furthermore, we showed that low-level expression of LIM2 in CD133-high glioma was associated with poorer survival, suggesting that LIM2 could be a therapeutic target for glioma expressing a high level of CD133. Connectivity mapping identified vinblastine and vincristine as agents that could reverse the CD133/HOX genes/LIM2-signature, and we confirmed this by in vitro analysis in glioma cell lines, demonstrating that CD133 and HOX genes were co-expressed and could be downregulated by vincristine. In conclusion, our data show that CD133 and HOX genes are important prognostic markers in glioma and shed light on possible treatment strategies for glioma expressing a high level of CD133.


Subject(s)
AC133 Antigen/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Glioma/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Progression , Eye Proteins/genetics , Female , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Gene Expression Regulation, Neoplastic/drug effects , Genes, Homeobox/genetics , Glioma/diagnosis , Glioma/therapy , Humans , Kaplan-Meier Estimate , Male , Membrane Proteins/genetics , Neoplasm Grading , Prognosis , Proportional Hazards Models , Reverse Transcriptase Polymerase Chain Reaction , Vinblastine/pharmacology , Vincristine/pharmacology
20.
Nanomedicine ; 13(3): 921-932, 2017 04.
Article in English | MEDLINE | ID: mdl-27979747

ABSTRACT

HPV subtypes (16, 18) are associated with the development of cervical cancer, with oncoproteins E6 and E7 responsible for pathogenesis. The goal of this study was to evaluate our 'smart system' technology platform for DNA vaccination against cervical cancer. The vaccination platform brings together two main components; a peptide RALA which condenses DNA into cationic nanoparticles (NPs), and a polymeric polyvinylpyrrolidone (PVP) microneedle (MN) patch for cutaneous delivery of the loaded NPs. RALA condensed E6/E7 DNA into NPs not exceeding 100nm in diameter, and afforded the DNA protection from degradation in PVP. Sera from mice vaccinated with MN/RALA-E6/E7 were richer in E6/E7-specific IgGs, displayed a greater T-cell-mediated TC-1 cytotoxicity and contained more IFN-γ than sera from mice that received NPs intramuscularly. More importantly, MN/RALA-E6/E7 delayed TC-1 tumor initiation in a prophylactic model, and slowed tumor growth in a therapeutic model of vaccination, and was more potent than intramuscular vaccination.


Subject(s)
Cancer Vaccines/administration & dosage , Gene Transfer Techniques/instrumentation , Oligopeptides/chemistry , Papillomavirus Infections/prevention & control , Povidone/chemistry , Uterine Cervical Neoplasms/prevention & control , Vaccination/instrumentation , Vaccines, DNA/administration & dosage , Administration, Cutaneous , Animals , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line , Cervix Uteri/immunology , Cervix Uteri/pathology , Cervix Uteri/virology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Female , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Human papillomavirus 18/genetics , Human papillomavirus 18/immunology , Humans , Immunity, Humoral , Mice, Inbred C57BL , Needles , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Repressor Proteins/genetics , Repressor Proteins/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...