Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3680, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369668

ABSTRACT

In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Lung/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Peptides/metabolism , Epigenesis, Genetic
2.
Front Oncol ; 12: 862427, 2022.
Article in English | MEDLINE | ID: mdl-35719960

ABSTRACT

Objective: Lysine-Specific Demethylase-1 (LSD1) is overexpressed in breast cancer cells and facilitate mesenchymal properties which may contribute to therapeutic resistance and cancer progression. The purpose of this study was to investigate the safety of combination, nab-paclitaxel and phenelzine, an irreversible LSD1 inhibitor in patients with metastatic breast cancer (mBC). Methods: Eligible patients with mBC were treated with nab-paclitaxel (100mg/m2) weekly for 3 weeks with one week break in a 28-day cycle. Dose escalation of phenelzine followed the Cumulative Cohort Design and phenelzine treatment commenced from day 2 of first cycle. Eleven patients were screened, and eligible patients were enrolled in cohorts with the dose of phenelzine ranging from 45mg to 90mg. Results: The Optimum Biological Dose was established at 60mg of phenelzine daily in combination with nab-paclitaxel and considered as the recommended phase 2 dose. Most (95%) of adverse events were grade 1 or 2 with two grade 3 events being diarrhea and neutropenia at 45mg and 60mg phenelzine respectively, with no unexpected toxicity/deaths. Commonly reported toxicities were fatigue (n=4,50%), dizziness (n=6,75%), neutropenia (n=3,37.5%), peripheral neuropathy (n=3,37.5%), diarrhea (n=2,25%), and hallucination (n=2,25%). After a median follow up of 113 weeks, all patients showed disease progression on trial with 4 patients being alive at the time of data cut off, including one patient with triple negative breast cancer. Median progression-free survival was 34 weeks. Significant inhibition of LSD1 and suppression of mesenchymal markers in circulating tumor cells were noted. Conclusion: Phenelzine in combination with nab-paclitaxel was well tolerated, without any unexpected toxicities in patients with mBC and demonstrated evidence of antitumor activity. For the first time, this proof-of-concept study showed in-vivo inhibition of LSD1 suppressed mesenchymal markers, which are known to facilitate generation of cancer stem cells with metastatic potential. Clinical Trial Registration: ClinicalTrials.Gov NCT03505528, UTN of U1111-1197-5518.

3.
Cancers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35326747

ABSTRACT

Protein kinase C (PKC)-θ is a serine/threonine kinase with both cytoplasmic and nuclear functions. Nuclear chromatin-associated PKC-θ (nPKC-θ) is increasingly recognized to be pathogenic in cancer, whereas its cytoplasmic signaling is restricted to normal T-cell function. Here we show that nPKC-θ is enriched in circulating tumor cells (CTCs) in patients with triple-negative breast cancer (TNBC) brain metastases and immunotherapy-resistant metastatic melanoma and is associated with poor survival in immunotherapy-resistant disease. To target nPKC-θ, we designed a novel PKC-θ peptide inhibitor (nPKC-θi2) that selectively inhibits nPKC-θ nuclear translocation but not PKC-θ signaling in healthy T cells. Targeting nPKC-θ reduced mesenchymal cancer stem cell signatures in immunotherapy-resistant CTCs and TNBC xenografts. PKC-θ was also enriched in the nuclei of CD8+ T cells isolated from stage IV immunotherapy-resistant metastatic cancer patients. We show for the first time that nPKC-θ complexes with ZEB1, a key repressive transcription factor in epithelial-to-mesenchymal transition (EMT), in immunotherapy-resistant dysfunctional PD1+/CD8+ T cells. nPKC-θi2 inhibited the ZEB1/PKC-θ repressive complex to induce cytokine production in CD8+ T cells isolated from patients with immunotherapy-resistant disease. These data establish for the first time that nPKC-θ mediates immunotherapy resistance via its activity in CTCs and dysfunctional CD8+ T cells. Disrupting nPKC-θ but retaining its cytoplasmic function may offer a means to target metastases in combination with chemotherapy or immunotherapy.

4.
Biol Reprod ; 106(1): 132-144, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34849582

ABSTRACT

The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, have been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodeling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterized tissue specific expression and cellular localization patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.


Subject(s)
Epigenesis, Genetic/physiology , Lizards/physiology , Sex Determination Processes/physiology , Temperature , Animals , Chromatin Assembly and Disassembly/genetics , Female , Gonads/chemistry , Histones/analysis , Immunohistochemistry/methods , Immunohistochemistry/veterinary , Jumonji Domain-Containing Histone Demethylases/analysis , Lizards/genetics , Male , Methylation , RNA-Binding Proteins/analysis , Sex Determination Processes/genetics
6.
Cell Discov ; 7(1): 37, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34031383

ABSTRACT

Treatment options for COVID-19 remain limited, especially during the early or asymptomatic phase. Here, we report a novel SARS-CoV-2 viral replication mechanism mediated by interactions between ACE2 and the epigenetic eraser enzyme LSD1, and its interplay with the nuclear shuttling importin pathway. Recent studies have shown a critical role for the importin pathway in SARS-CoV-2 infection, and many RNA viruses hijack this axis to re-direct host cell transcription. LSD1 colocalized with ACE2 at the cell surface to maintain demethylated SARS-CoV-2 spike receptor-binding domain lysine 31 to promote virus-ACE2 interactions. Two newly developed peptide inhibitors competitively inhibited virus-ACE2 interactions, and demethylase access to significantly inhibit viral replication. Similar to some other predominantly plasma membrane proteins, ACE2 had a novel nuclear function: its cytoplasmic domain harbors a nuclear shuttling domain, which when demethylated by LSD1 promoted importin-α-dependent nuclear ACE2 entry following infection to regulate active transcription. A novel, cell permeable ACE2 peptide inhibitor prevented ACE2 nuclear entry, significantly inhibiting viral replication in SARS-CoV-2-infected cell lines, outperforming other LSD1 inhibitors. These data raise the prospect of post-exposure prophylaxis for SARS-CoV-2, either through repurposed LSD1 inhibitors or new, nuclear-specific ACE2 inhibitors.

7.
Front Immunol ; 11: 1228, 2020.
Article in English | MEDLINE | ID: mdl-32612611

ABSTRACT

Lysine specific demethylase 1 (LSD1) is a key epigenetic eraser enzyme implicated in cancer metastases and recurrence. Nuclear LSD1 phosphorylated at serine 111 (nLSD1p) has been shown to be critical for the development of breast cancer stem cells. Here we show that circulating tumor cells isolated from immunotherapy-resistant metastatic melanoma patients express higher levels of nLSD1p compared to responders, which is associated with co-expression of stem-like, mesenchymal genes. Targeting nLSD1p with selective nLSD1 inhibitors better inhibits the stem-like mesenchymal signature than traditional FAD-specific LSD1 catalytic inhibitors such as GSK2879552. We also demonstrate that nLSD1p is enriched in PD-1+CD8+ T cells from resistant melanoma patients and 4T1 immunotherapy-resistant mice. Targeting the LSD1p nuclear axis induces IFN-γ/TNF-α-expressing CD8+ T cell infiltration into the tumors of 4T1 immunotherapy-resistant mice, which is further augmented by combined immunotherapy. Underpinning these observations, nLSD1p is regulated by the key T cell exhaustion transcription factor EOMES in dysfunctional CD8+ T cells. EOMES co-exists with nLSD1p in PD-1+CD8+ T cells in resistant patients, and nLSD1p regulates EOMES nuclear dynamics via demethylation/acetylation switching of critical EOMES residues. Using novel antibodies to target these post-translational modifications, we show that EOMES demethylation/acetylation is reciprocally expressed in resistant and responder patients. Overall, we show for the first time that dual inhibition of metastatic cancer cells and re-invigoration of the immune system requires LSD1 inhibitors that target the nLSD1p axis.


Subject(s)
Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Histone Demethylases/genetics , Neoplasms/etiology , T-Box Domain Proteins/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Animals , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Histone Demethylases/metabolism , Humans , Immunotherapy , Mice , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , T-Box Domain Proteins/genetics , T-Lymphocytes/immunology , Treatment Outcome
8.
Int J Mol Sci ; 20(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238530

ABSTRACT

DUSP6 is a dual-specificity phosphatase (DUSP) involved in breast cancer progression, recurrence, and metastasis. DUSP6 is predominantly cytoplasmic in HER2+ primary breast cancer cells, but the expression and subcellular localization of DUSPs, especially DUSP6, in HER2-positive circulating tumor cells (CTCs) is unknown. Here we used the DEPArray system to identify and isolate CTCs from metastatic triple negative breast cancer (TNBC) patients and performed single-cell NanoString analysis to quantify cancer pathway gene expression in HER2-positive and HER2-negative CTC populations. All TNBC patients contained HER2-positive CTCs. HER2-positive CTCs were associated with increased ERK1/ERK2 expression, which are direct DUSP6 targets. DUSP6 protein expression was predominantly nuclear in breast CTCs and the brain metastases but not pleura or lung metastases of TNBC patients. Therefore, nuclear DUSP6 may play a role in the association with cancer spreading in TNBC patients, including brain metastasis.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms/secondary , Dual Specificity Phosphatase 6/genetics , Gene Expression Regulation, Neoplastic , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cell Nucleus/genetics , Disease Models, Animal , Dual Specificity Phosphatase 6/antagonists & inhibitors , Dual Specificity Phosphatase 6/metabolism , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism , Humans , MAP Kinase Signaling System , Mice , Neoplasm Invasiveness , Neoplasm Staging , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Protein Binding , Protein Transport , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Single-Cell Analysis , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/metabolism
9.
Appl Environ Microbiol ; 69(5): 2463-83, 2003 May.
Article in English | MEDLINE | ID: mdl-12732511

ABSTRACT

16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.


Subject(s)
Geologic Sediments/microbiology , Prokaryotic Cells , Antarctic Regions , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , DNA, Archaeal/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Ecosystem , Molecular Sequence Data , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...