Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 510: 147-156, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36470478

ABSTRACT

Cofilin 1 is an actin depolymerizing protein playing a fundamental role in the turnover of actin filaments specifically in dendritic spines, where it has been associated with structural and functional plasticity processes. Using a differential proteomic approach, we recently identified cofilin 1 as a potential candidate for controlling plasticity levels in the mouse visual cortex. Here, we focus on analyzing the expression of cofilin 1 and of its serine-3 phosphorylated inactive form in the mouse visual cortex during postnatal development and its modulation by visual input. Western blot experiments showed that cofilin 1 decreases from the critical period to the adult stage, in correlation with the decreasing level of cortical plasticity, and that monocular deprivation increases its expression in the cortex contralateral to the deprived eye during the critical period but not in the adult stage. By immunohistochemistry, we identified that the phospho-cofilin 1 immunopositive signal is homogeneously expressed along the different layers of the mouse visual cortex and that it increases during postnatal development. Furthermore, monocular deprivation increases the phospho-cofilin 1 signal in the contralateral cortex to the deprived eye during the critical period but not in the adult stage. Altogether, these results suggest that cofilin 1 and its modification by phosphorylation are relevant players in the processes controlling experience-dependent plasticity in the mouse visual cortex.


Subject(s)
Cofilin 1 , Visual Cortex , Animals , Mice , Neuronal Plasticity , Proteomics , Sensory Deprivation , Vision, Monocular
SELECTION OF CITATIONS
SEARCH DETAIL
...