Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Biomater ; 10(5): 2065-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24370641

ABSTRACT

Articular cartilage lesions are a particular challenge for regenerative medicine strategies as cartilage function stems from a complex depth-dependent organization. Tissue engineering scaffolds that vary in morphology and function offer a template for zone-specific cartilage extracellular matrix (ECM) production and mechanical properties. We fabricated multi-zone cartilage scaffolds by the electrostatic deposition of polymer microfibres onto particulate-templated scaffolds produced with 0.03 or 1.0mm(3) porogens. The scaffolds allowed ample space for chondrocyte ECM production within the bulk while also mimicking the structural organization and functional interface of cartilage's superficial zone. Addition of aligned fibre membranes enhanced the mechanical and surface properties of particulate-templated scaffolds. Zonal analysis of scaffolds demonstrated region-specific variations in chondrocyte number, sulfated GAG-rich ECM, and chondrocytic gene expression. Specifically, smaller porogens (0.03mm(3)) yielded significantly higher sGAG accumulation and aggrecan gene expression. Our results demonstrate that bilayered scaffolds mimic some key structural characteristics of native cartilage, support in vitro cartilage formation, and have superior features to homogeneous particulate-templated scaffolds. We propose that these scaffolds offer promise for regenerative medicine strategies to repair articular cartilage lesions.


Subject(s)
Cartilage, Articular/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cattle , Cell Proliferation , Chondrocytes/cytology , Chondrocytes/metabolism , Compressive Strength , DNA/metabolism , Gene Expression Profiling , Glycosaminoglycans/metabolism , Interferometry , Solubility , Tensile Strength
2.
Ann Biomed Eng ; 39(12): 3021-30, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21847685

ABSTRACT

Electrospun scaffolds have been used extensively for tissue engineering applications due to the simple processing scheme and versatility. However, many additional benefits can be imparted to these materials via post-processing techniques. Specifically the addition of structured pores on the micro-scale can offer a method to enable patterned cell adhesion, enhanced diffusional properties, and/or guide vascular infiltration upon implantation in vivo. In this study, we laser ablated electrospun poly(L: -lactic acid) (PLA) scaffolds and assessed the ablation process and cellular interaction by examining human adipose-derived stem cell (hASC) viability and proliferation on laser micro-machined scaffolds. Laser ablated pores of 150, 300, and 600 µm diameter were micro-machined through electrospun PLA scaffolds. Laser ablation parameters were varied and it was determined that the aperture and z-travel direction of the laser linearly correlated with the ablated pore diameter. To assess cytocompatibility of the micro-machined scaffolds, hASCs were seeded on each scaffold and cell viability was assessed on day 7. Human ASCs were able to adhere around the micro-machined features. DNA content was quantified on all scaffolds and it was determined that hASCs were able to proliferate on all scaffolds. The process of laser ablation could impart many beneficial features to electrospun scaffolds by increasing mass transport and mimicking micro-scale features and assisting in patterning of cells around micro-machined features.


Subject(s)
Laser Therapy , Tissue Engineering/methods , Tissue Scaffolds , Adipocytes , Cell Adhesion , Cell Survival , Cells, Cultured , Female , Humans , Lactic Acid/chemistry , Mesenchymal Stem Cells , Middle Aged , Polyesters , Polymers/chemistry
3.
Biomed Mater ; 4(3): 035002, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19390143

ABSTRACT

Development of tissue-engineered bone constructs has recently focused on the use of electrospun composite scaffolds seeded with stem cells from various source tissues. In this study, we fabricated electrospun composite scaffolds consisting of beta-tricalcium phosphate (TCP) crystals and poly(L-lactic acid) (PLA) at varying loading levels of TCP (0, 5, 10, 20 wt%) and assessed the composite scaffolds' material properties and ability to induce proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) in the presence of osteogenic differentiating medium. The electrospun scaffolds all exhibited a nonwoven structure with an interconnected porous network. With the addition of TCP, the fiber diameter increased with each treatment ranging from 503.39 +/- 20.31 nm for 0 wt% TCP to 1267.36 +/- 59.03 nm for 20 wt% TCP. Tensile properties of the composite scaffolds were assessed and the overall tensile strength of the neat scaffold (0 wt% TCP) was 847 +/- 89.43 kPA; the addition of TCP significantly decreased this value to an average of 350.83 +/- 38.57 kPa. As the electrospun composite scaffolds degraded in vitro, TCP was released into the medium with the largest release occurring within the first 6 days. Human ASCs were able to adhere, proliferate and osteogenically differentiate on all scaffold combinations. DNA content increased in a temporal manner for each scaffold over 18 days in culture although for the day 12 timepoint, the 10 wt% TCP scaffold induced the greatest hASC proliferation. Endogenous alkaline phosphatase activity was enhanced on the composite PLA/TCP scaffolds compared to the PLA control particularly by day 18. It was noted that at the highest TCP loading levels of 10 and 20 wt%, there was a dramatic increase in the amount of cell-mediated mineralization compared to the 5 wt% TCP and the neat PLA scaffold. This work suggests that local environment cues provided by the biochemical nature of the scaffold can accelerate the overall osteogenic differentiation of hASCs and encourage rapid ossification.


Subject(s)
Adipocytes/cytology , Calcium Phosphates/chemistry , Lactic Acid/chemistry , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis/physiology , Polymers/chemistry , Tissue Engineering/methods , Adipocytes/physiology , Biocompatible Materials/chemistry , Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Cells, Cultured , Electrochemistry/methods , Humans , Materials Testing , Mesenchymal Stem Cells/physiology , Osteoblasts/physiology , Polyesters , Rotation
4.
Biomed Mater ; 4(2): 025001, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19208941

ABSTRACT

Atomic layer deposition (ALD) is investigated as a process to produce inorganic metallic bio-adhesive coatings on cellulosic fiber substrates. The atomic layer deposition technique is known to be capable of forming highly conformal and uniform inorganic thin film coatings on a variety of complex surfaces, and this work presents an initial investigation of ALD on porous substrate materials to produce high-precision biocompatible titanium oxynitride coatings. X-ray photoelectron spectroscopy (XPS) confirmed TiNOx composition, and transmission electron microscopy (TEM) analysis showed the coatings to be uniform and conformal on the fiber surfaces. Biocompatibility of the modified structures was determined as a function of coating layer thickness by fluorescent live/dead staining of human adipose-derived adult stem cells (hADSC) at 6, 12 and 24 h. Cell adhesion showed that thin TiNOx coatings yielded the highest number of cells after 24 h with a sample coated with a 20 A coating having approximately 28.4 +/- 3.50 ng DNA. By altering the thickness of the deposited film, it was possible to control the amount of cells adhered to the samples. This work demonstrates the potential of low temperature ALD as a surface modification technique to produce biocompatible cellulose and other implant materials.


Subject(s)
Cellulose/chemistry , Coated Materials, Biocompatible/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Adipose Tissue/cytology , Cell Adhesion , DNA/chemistry , Humans , Microscopy, Electron, Transmission , Nanotechnology/methods , Spectrometry, X-Ray Emission/methods , Stem Cells/cytology , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL