Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurol ; 4: 124, 2013.
Article in English | MEDLINE | ID: mdl-24062716

ABSTRACT

While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

2.
Nanotechnology ; 21(22): 225703, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20453287

ABSTRACT

We report the mechanical characterization of a nanocomposite thin film consisting of CdSe quantum dots (QDs) and the electroluminescent polymer poly[2-methoxy-5-2(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV). The electrical and optical properties of this nanocomposite have been studied intensely for organic electronics research. However, the mechanical behaviour-which depends on several variables, such as the concentration of QDs, the interfacial surface area, deformation mechanisms, and the mechanical properties of the QDs and polymer-is not well understood. In this paper, thin films of CdSe QDs blended with MEH-PPV are prepared at different QD:polymer ratios. The QDs' surface ligands are removed to promote dispersion and to more realistically mimic QD-polymer devices. QD dispersion is verified using transmission electron microscopy, while the films' morphology and roughness are observed using atomic force microscopy. Finally, quasi-static nanoindentation is used to measure the elastic modulus, hardness, and creep of the films. The incorporation of QDs into the polymer matrix is seen to increase the elastic modulus and hardness by factors of 4 and 5, respectively, both of which scale linearly as a function of QD volume fraction. Furthermore, the QDs have the effect of suppressing the viscoelastic behaviour of the polymer, which is observed by studying the creep under a constant load. These results may have profound implications for future nanocomposite devices, such as increased stiffness, damage resistance, and long-term stability.

SELECTION OF CITATIONS
SEARCH DETAIL