Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 954948, 2022.
Article in English | MEDLINE | ID: mdl-36091374

ABSTRACT

IGF-1 is a critical fetal growth-promoting hormone. Experimental infusion of an IGF-1 analog, human recombinant LR3 IGF-1, into late gestation fetal sheep increased fetal organ growth and skeletal muscle myoblast proliferation. However, LR3 IGF-1 has a low affinity for IGF binding proteins (IGFBP), thus reducing physiologic regulation of IGF-1 bioavailability. The peptide sequences for LR3 IGF-1 and sheep IGF-1 also differ. To overcome these limitations with LR3 IGF-1, we developed an ovine (sheep) specific recombinant IGF-1 (oIGF-1) and tested its effect on growth in fetal sheep. First, we measured in vitro myoblast proliferation in response to oIGF-1. Second, we examined anabolic signaling pathways from serial skeletal muscle biopsies in fetal sheep that received oIGF-1 or saline infusion for 2 hours. Finally, we measured the effect of fetal oIGF-1 infusion versus saline infusion (SAL) for 1 week on fetal body and organ growth, in vivo myoblast proliferation, skeletal muscle fractional protein synthetic rate, IGFBP expression in skeletal muscle and liver, and IGF-1 signaling pathways in skeletal muscle. Using this approach, we showed that oIGF-1 stimulated myoblast proliferation in vitro. When infused for 1 week, oIGF-1 increased organ growth of the heart, kidney, spleen, and adrenal glands and stimulated skeletal myoblast proliferation compared to SAL without increasing muscle fractional synthetic rate or hindlimb muscle mass. Hepatic and muscular gene expression of IGFBPs one to three was similar between oIGF-1 and SAL. We conclude that oIGF-1 promotes tissue and organ-specific growth in the normal sheep fetus.

2.
Diabetologia ; 56(7): 1629-37, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23604553

ABSTRACT

AIMS/HYPOTHESIS: The NAD(+)-dependent protein deacetylase sirtuin (SIRT)1 is thought to be a key regulator of skeletal muscle metabolism. However, its precise role in the regulation of insulin sensitivity is unclear. Accordingly, we sought to determine the effect of skeletal muscle-specific overexpression of SIRT1 on skeletal muscle insulin sensitivity and whole-body energy metabolism. METHODS: At 10 weeks of age, mice with muscle-specific overexpression of SIRT1 and their wild-type littermates were fed a standard diet with free access to chow or an energy-restricted (60% of standard) diet for 20 days. Energy expenditure and body composition were measured by indirect calorimetry and magnetic resonance imaging, respectively. Skeletal muscle insulin-stimulated glucose uptake was measured ex vivo in soleus and extensor digitorum longus muscles using a 2-deoxyglucose uptake technique with a physiological insulin concentration of 360 pmol/l (60 µU/ml). RESULTS: Sirt1 mRNA and SIRT1 protein levels were increased by approximately 100- and 150-fold, respectively, in skeletal muscle of mice with SIRT1 overexpression compared with wild-type mice. Despite this large-scale overexpression of SIRT1, body composition, whole-body energy expenditure, substrate oxidation and voluntary activity were comparable between genotypes. Similarly, skeletal muscle basal and insulin-stimulated glucose uptake were unaltered with SIRT1 overexpression. Finally, while 20 days of energy restriction enhanced insulin-stimulated glucose uptake in skeletal muscles of wild-type mice, no additional effect of SIRT1 overexpression was observed. CONCLUSIONS/INTERPRETATION: These results demonstrate that upregulation of SIRT1 activity in skeletal muscle does not affect whole-body energy expenditure or enhance skeletal muscle insulin sensitivity in young mice on a standard diet with free access to chow or in young mice on energy-restricted diets.


Subject(s)
Energy Metabolism/physiology , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Sirtuin 1/metabolism , Animals , Body Composition/genetics , Body Composition/physiology , Electrophoresis, Polyacrylamide Gel , Genotype , Mice , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics
3.
Horm Metab Res ; 41(10): 757-61, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19598077

ABSTRACT

Phosphoinositide 3-kinase is a key signaling intermediate necessary for the metabolic actions of insulin. In this study, we assessed the effects of in vivo knockdown of the p85alpha subunit of phosphoinositide 3-kinase on insulin sensitivity, using an antisense oligonucleotide, in lean mice, diet-induced obese mice, and obese leptin-deficient Lep (ob/ob) mice. Mice were injected with either p85alpha-targeted antisense oligonucleotide or saline twice weekly for 4 weeks. Fasting levels of glycemia and insulinemia and insulin and glucose tolerance tests were used to determine insulin sensitivity. Western blot analysis and real-time polyacrylamide chain reaction were used to assess p85alpha protein and mRNA expression. IN VIVO administration of antisense oligonucleotide resulted in 50 and 60% knockdown of liver p85alpha protein and mRNA, respectively, in the lean, diet-induced obese and Lep (ob/ob) mice. This was associated with increased phosphoinositide 3-kinase activity and improved insulin sensitivity in diet-induced obese and Lep (ob/ob) mice. Thus, p85alpha could be an important therapeutic target to ameliorate insulin resistance.


Subject(s)
Insulin Resistance/physiology , Obesity/metabolism , Oligonucleotides, Antisense/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Animals , Blood Glucose/analysis , Blotting, Western , Glucose Tolerance Test , Insulin/blood , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases/genetics , RNA , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...