Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Science ; 380(6642): 242-244, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37079673

ABSTRACT

Materials discovery alone has not translated into lower-cost water treatment.

2.
Sci Adv ; 8(29): eabn9545, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857839

ABSTRACT

Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine learning (ML) implementation for the discovery of innovative polymers with ideal performance. Specifically, multitask ML models are trained on experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract valuable insights into the contributions of different chemical moieties to permeability and selectivity. We then screen over 9 million hypothetical polymers and identify thousands that lie well above current performance upper bounds, including hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrers, respectively. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.

3.
Water Res ; 220: 118593, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35671683

ABSTRACT

An industrial ceramic nanofiltration membrane (pore size 0.9 nm) was tested in a Canadian oil field for more than 12,500 h to treat wastewater directly from daily operations, without any type of pre-treatment. This wastewater contained a high content of total suspended solids (13 to 510 mg/kg), and total organic carbon (31 to 134 mg/kg). The membrane unit was operated at different transmembrane pressure (TMP) set points (4-16 bar) and recovery set points (40-80%). The data show that ion and compound rejection depend strongly on a combination of both TMP and recovery, with the largest rejection occurring at low recovery values and high TMP values. Two mechanisms were responsible for rejection: sieving, which mostly impacted compound rejection, and electrostatic phenomena that impacted ion rejection. It is shown that ion rejection depends linearly on charge density of the ion. Ion rejection was measured as high as 85% and compounds (such as TSS) were rejected as high as 100%. The specific flux varied between 1-10 L/(m2.h.bar). Results from this field testing indicate the possibility of using these types of ceramic membranes for oil field wastewater treatment.


Subject(s)
Wastewater , Water Purification , Canada , Ceramics , Filtration/methods , Membranes, Artificial , Water Purification/methods
4.
Environ Sci Technol ; 56(12): 8176-8186, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35576931

ABSTRACT

Long-term continuous monitoring (LTCM) of water quality can provide high-fidelity datasets essential for executing swift control and enhancing system efficiency. One roadblock for LTCM using solid-state ion-selective electrode (S-ISE) sensors is biofouling on the sensor surface, which perturbs analyte mass transfer and deteriorates the sensor reading accuracy. This study advanced the anti-biofouling property of S-ISE sensors through precisely coating a self-assembled channel-type zwitterionic copolymer poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA) on the sensor surface using electrospray. The PTFEMA-r-SBMA membrane exhibits exceptional permeability and selectivity to primary ions in water solutions. NH4+ S-ISE sensors with this anti-fouling zwitterionic layer were examined in real wastewater for 55 days consecutively, exhibiting sensitivity close to the theoretical value (59.18 mV/dec) and long-term stability (error <4 mg/L). Furthermore, a denoising data processing algorithm (DDPA) was developed to further improve the sensor accuracy, reducing the S-ISE sensor error to only 1.2 mg/L after 50 days of real wastewater analysis. Based on the dynamic energy cost function and carbon footprint models, LTCM is expected to save 44.9% NH4+ discharge, 12.8% energy consumption, and 26.7% greenhouse emission under normal operational conditions. This study unveils an innovative LTCM methodology by integrating advanced materials (anti-fouling layer coating) with sensor data processing (DDPA).


Subject(s)
Biofouling , Biofouling/prevention & control , Ions , Methacrylates , Polymers , Wastewater
5.
Nat Mater ; 21(4): 387-388, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35361947
6.
Environ Sci Technol ; 56(8): 4905-4914, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35274533

ABSTRACT

Accurate and continuous monitoring of soil nitrogen is critical for determining its fate and providing early warning for swift soil nutrient management. However, the accuracy of existing electrochemical sensors is hurdled by the immobility of targeted ions, ion adsorption to soil particles, and sensor reading noise and drifting over time. In this study, polyacrylamide hydrogel with a thickness of 0.45 µm was coated on the surface of solid-state ion-selective membrane (S-ISM) sensors to absorb water contained in soil and, consequently, enhance the accuracy (R2 > 0.98) and stability (drifting < 0.3 mV/h) of these sensors monitoring ammonium (NH4+) and nitrate (NO3-) ions in soil. An ion transport model was built to simulate the long-term NH4+ dynamic process (R2 > 0.7) by considering the soil adsorption process and soil complexity. Furthermore, a soil-based denoising data processing algorithm (S-DDPA) was developed based on the unique features of soil sensors including the nonlinear mass transfer and ion diffusion on the heterogeneous sensor-hydrogel-soil interface. The 14 day tests using real-world soil demonstrated the effectiveness of S-DDPA to eliminate false signals and retrieve the actual soil nitrogen information for accurate (error: <2 mg/L) and continuous monitoring.


Subject(s)
Ammonium Compounds , Nitrogen , Hydrogels , Nitrates/analysis , Nitrogen/analysis , Soil
7.
Sci Total Environ ; 780: 146399, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33770593

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) make up a large group of persistent anthropogenic chemicals which are difficult to degrade and/or destroy. PFAS are an emerging class of contaminants, but little is known about the long-term health effects related to exposure. In addition, technologies to identify levels of contamination in the environment and to remediate contaminated sites are currently inadequate. In this opinion-type discussion paper, a team of researchers from the University of Connecticut and the University at Albany discuss the scientific challenges in their specific but intertwined PFAS research areas, including rapid and low-cost detection, energy-saving remediation, the role of T helper cells in immunotoxicity, and the biochemical and molecular effects of PFAS among community residents with measurable PFAS concentrations. Potential research directions that may be employed to address those challenges and improve the understanding of sensing, remediation, exposure to, and health effects of PFAS are then presented. We hope our account of emerging problems related to PFAS contamination will encourage a broad range of scientific experts to bring these research initiatives addressing PFAS into play on a national scale.

8.
RSC Adv ; 11(41): 25658-25663, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-35478905

ABSTRACT

MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO2 separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes. We propose herein the fabrication of robust thin-film composite mixed-matrix membranes (TFC MMMs) using a three dimensional (3D) printing technique with a thickness of 2-3 µm. We systematically studied the effect of casting concentration and number of electrospray cycles on membrane thickness and CO2 separation performance. Using a low concentration of polymer of intrinsic microporosity (PIM-1) or PIM-1/HKUST-1 solution (0.1 wt%) leads to TFC membranes with a thickness of less than 500 nm, but the fabricated membranes showed poor CO2/N2 selectivity, which could be attributed to microscopic defects. To avoid these microscale defects, we increased the concentration of the casting solution to 0.5 wt% resulting in TFC MMMs with a thickness of 2-3 µm which showed three times higher CO2 permeance than the neat PIM-1 membrane. These membranes represent the first examples of 3D printed TFC MMMs using the electrospray printing technique.

9.
J Hazard Mater ; 408: 124437, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33162244

ABSTRACT

As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range of applications in consumer products and industrial processes, PFASs have been detected in the environment as well as in human body. Due to their potential adverse human health effects, the U.S. Environmental Protection Agency (EPA) set the combined concentration of PFOA and PFOS in drinking water at 70 ng/L or 70 ppt (parts per trillion) as a lifetime health advisory level. Current standard detection methods for PFASs heavily rely on chromatographic techniques coupled with mass spectrometry. Although these methods provide accurate, specific, and sensitive measurements, their applications are greatly limited in advanced analytical laboratories because it necessitates expensive instrumentations, professional operators, complicated sample pretreatment, and considerable analysis time. Therefore, other detection methods beyond chromatographic based techniques, such as optical and electrochemical techniques, have also been extensively explored for simple, accessible, inexpensive, rapid, and sensitive detection of PFASs, particularly PFOA and PFOS. The purpose of this review is to provide recent progress in alternative detection platforms relying on non-MS based techniques for PFASs analysis. Starting with a brief introduction about the importance of monitoring PFASs, recent advances in various PFASs detection methods are grouped and discussed based on the difference of signals, with an emphasis on the working principles of different techniques, the sensing mechanism, and the sensing performance. The review is closed with the conclusion and discussion of future trends.

10.
Polymers (Basel) ; 12(9)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932719

ABSTRACT

Electrospun membranes have shown promise for use in membrane distillation (MD) as they exhibit exceptionally low vapor transport. Their high porosity coupled with the occasional large pore can make them prone to wetting. In this work, initiated chemical vapor deposition (iCVD) is used to modify for electrospun membranes with increased hydrophobicity of the fiber network. To demonstrate conformal coating, we demonstrate the approach on intrinsically hydrophilic electrospun fibers and render the fibers suitable for MD. We enable conformal coating using a unique coating procedure, which provides convective flow of deposited polymers during iCVD. This is made possible by using a 3D printed scaffold, which changed the orientation of the membrane during the coating process. The new coating orientation allows both sides as well as the interior of the membrane to be coated simultaneously and reduced the coating time by a factor of 10 compared to conventional CVD approaches. MD testing confirmed the hydrophobicity of the material as 100% salt rejections were obtained.

11.
Environ Geochem Health ; 42(3): 809-818, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30993498

ABSTRACT

Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation-membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation-membrane process for algal-rich water treatment.


Subject(s)
Calcium/chemistry , Eutrophication , Ultrafiltration/instrumentation , Water Purification/instrumentation , Water Purification/methods , Membranes, Artificial , Microcystis/chemistry , Microscopy, Electron, Scanning , Osmotic Pressure , Particle Size , Ultrafiltration/methods , Water Pollutants, Chemical/chemistry
12.
Water Res X ; 4: 100028, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334492

ABSTRACT

Novel flexible thin mm-sized resistance-typed sensor film (MRSF) fabricated using ink-jet printing technology (IPT) was developed in this study to monitor water flow rate in pipelines in real time in situ mode. The mechanism of MRSF is that the mm-sized interdigitated electrodes made by printing silver nanoparticles on an elastic polyimide film bend under different flow rates, leading to variation of the resistance of the sensor at different degrees of curvature. Continuous flow tests showed that MRSF possessed a high accuracy (0.2 m/s) and excellent sensitivity (0.1447/ms-1). A model of sensor resistance and flow velocity was established to unfold the correlation between the fundamentals of fluid mechanics and the mechanic flexibility of sensor materials. An analytical model yielded a high coefficient of determination (R2 > 0.93) for the relationship between the resistance increment of the MRSF and the square of the flow velocity at the velocity range of 0.25-2 m/s. Furthermore, a temperature-correction model was developed to quantify the effect of water temperature on the sensor resistance readings. MRSF exhibited a low temperature coefficient of resistance (TCR, 0.001) at the water temperature range of 20-60 °C. Computational fluid dynamics (CFD) simulations using the finite element method were conducted and confirmed both the underlying load assumptions and the deformation characteristics of the sensor film under various flow and material conditions. High-resolution monitoring of water flow rate using MRSF technology was expected to save at least 50% energy consumption for a given unit, especially under flow fluctuation. MRSF possesses a great potential to perform real-time in situ monitoring at high accuracy with ultralow cost, thus enabling the feedback control at high spatiotemporal resolution to reduce the overall energy consumption in water and wastewater systems.

13.
Membranes (Basel) ; 9(5)2019 May 06.
Article in English | MEDLINE | ID: mdl-31064093

ABSTRACT

A composite, three-layered membrane for membrane distillation was prepared from electrospun polyvinylidene fluoride (PVDF) nanofibers supported by commercial polyethersulfone (PES) nanofiber based nonwoven from E.I. duPont de Nemours company (DuPont). The membranes were tested in direct contact membrane distillation (DCMD) using a 5.0 M sodium chloride brine as a feed solution. The triple layer membrane combines the hydrophobicity of PVDF and the robustness of the PES. The triple layer membrane demonstrated excellent performance in DCMD (i.e., relatively high water flux compared to the commercial PVDF membrane and a complete salt rejection of the brine) with mechanical properties imparted by the PES layer. This work is the first to demonstrate the use of a commercially produced nanofiber nonwoven for membrane distillation.

14.
Science ; 361(6403): 682-686, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115806

ABSTRACT

Polyamide thickness and roughness have been identified as critical properties that affect thin-film composite membrane performance for reverse osmosis. Conventional formation methodologies lack the ability to control these properties independently with high resolution or precision. An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide. The small droplet size coupled with low monomer concentrations result in polyamide films that are smoother and thinner than conventional polyamides, while the additive nature of the approach allows for control of thickness and roughness. Polyamide films are formed with a thickness that is controllable down to 4-nanometer increments and a roughness as low as 2 nanometers while still exhibiting good permselectivity relative to a commercial benchmarking membrane.

15.
Sci Adv ; 4(3): e1700938, 2018 03.
Article in English | MEDLINE | ID: mdl-29536038

ABSTRACT

We report the first characterization study of commercial prototype carbon nanotube (CNT) membranes consisting of sub-1.27-nm-diameter CNTs traversing a large-area nonporous polysulfone film. The membranes show rejection of NaCl and MgSO4 at higher ionic strengths than have previously been reported in CNT membranes, and specific size selectivity for analytes with diameters below 1.24 nm. The CNTs used in the membranes were arc discharge nanotubes with inner diameters of 0.67 to 1.27 nm. Water flow through the membranes was 1000 times higher than predicted by Hagen-Poiseuille flow, in agreement with previous CNT membrane studies. Ideal gas selectivity was found to deviate significantly from that predicted by both viscous and Knudsen flow, suggesting that surface diffusion effects may begin to dominate gas selectivity at this size scale.

16.
Water Res ; 122: 431-439, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28624726

ABSTRACT

Determining the size distribution and composition of particles suspended in water can be challenging in heterogeneous multicomponent samples. Light scattering techniques can measure the distribution of particle sizes, but provide no basis for distinguishing different types of particles. Direct imaging techniques can categorize particles by shape, but offer few insights into their composition. Holographic characterization meets this need by directly measuring the size, refractive index, and three-dimensional position of individual particles in a suspension. The ability to measure an individual colloidal particle's refractive index is a unique capability of holographic characterization. Holographic characterization is fast enough, moreover, to build up population distribution data in real time, and to track time variations in the concentrations of different dispersed populations of particles. We demonstrate these capabilities using a model system consisting of polystyrene microbeads co-dispersed with bacteria in an oil-in-water emulsion. We also demonstrate how the holographic fingerprint of different contaminants can contribute to identifying their source.


Subject(s)
Holography , Water Pollutants , Particle Size , Refractometry , Suspensions , Water
17.
Biosens Bioelectron ; 79: 435-41, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26745789

ABSTRACT

This study aimed at achieving high power output of benthic microbial fuel cells (BMFCs) with novel geometric anode setups (inverted tube granular activated charcoal (IT-GAC) and carbon cloth roll (CCR)) and multiple anodes/electron collectors. The lab-scale tests showed the power density of IT-GAC and CCR anodes achieved at 2.92 and 2.55 W m(-2), the highest value ever reported in BMFCs. The power density of BMFCs substantially increased with electron collector number (titanium rods) in anodes. The connection of multiple electron collectors with multiple cathodes had much higher total voltage/current output than that with single cathode. The possibility of maintaining high power density at scaled-up BMFCs was explored by arranging multiple anodes in sediment. The compact configuration of multiple CCR anodes contacting each other did not deteriorate the performance of individual anodes, showing the feasibility of maximizing anode numbers per sediment footprint and achieving high power output. Multiple IT-GAC and CCR anodes with multiple collectors effectively utilized sediment at both horizontal and vertical directions and enhanced electron collection efficiency. This study demonstrated that bacterial adhesion and electron collection should be optimized on small anodes in order to maintain high power density and achieve high power output in the scaled-up BMFCs.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/economics , Electricity , Electrodes , Electrons , Equipment Design
18.
Bioresour Technol ; 197: 244-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26342335

ABSTRACT

Novel flat membrane-based microbial fuel cell (MMFC) sensors were developed by compacting two filter membranes coated with carbon ink. High micro-porosity and hydrophilicity of membranes offered the distinct advantages of short acclimation period (couple hours), simple compact configuration with microliter size, and high sensitivity and stability. MMFC sensors were examined at two toxic shocks (chromium and nickel) in a batch-mode test chamber, and rapidly responded to shock types and concentrations. The variation of voltage output was correlated with open circuit potential (OCP). Filter membranes facilitated bacterial attachment and shortened acclimation. The MMFC sensors showed good reusability and recovered several days after toxic shocks. The robustness of MMFC sensors was validated through 1-month tests. The stability of sensor signals was examined with coefficient of variance (CV) statistical analysis. The flat microliter MMFC has a great potential as "on-line sticker sensor" for real time in situ monitoring of wastewater quality.


Subject(s)
Bioelectric Energy Sources/microbiology , Wastewater , Acclimatization , Biosensing Techniques , Chromium/chemistry , Membranes, Artificial , Nickel/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry
19.
Environ Sci Technol ; 48(7): 4129-36, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24387600

ABSTRACT

Sustainable energy can be harnessed from fluids of differing salinity using a process known as pressure-retarded osmosis (PRO). We address one of the critical challenges of advance PRO by introducing a novel electrospun nanofiber-supported thin-film composite PRO membrane platform. The support was tiered with layers of nanofibers of different diameters to better withstand hydraulic pressure. The membranes successfully withstood an applied hydraulic pressure of 11.5 bar and exhibited performance that would produce an equivalent peak power density near 8.0 W/m(2) under real conditions (using 0.5 M NaCl and deionized water as the draw and feed solutions, respectively). This result shows the immense promise of nanofiber supported thin-film composite membranes for use in PRO.


Subject(s)
Membranes, Artificial , Nanofibers/chemistry , Pressure , Acrylic Resins/chemistry , Nanofibers/ultrastructure , Osmosis , Particle Size , Rheology , Water
20.
Environ Sci Technol ; 47(3): 1761-9, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23234259

ABSTRACT

Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Nanofibers/chemistry , Nanotechnology/methods , Osmosis , Acrylic Resins/chemistry , Mechanical Phenomena , Nanofibers/ultrastructure , Nylons/chemistry , Permeability , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...