Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 136(7): 857-870, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32403132

ABSTRACT

Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , CD8-Positive T-Lymphocytes/physiology , Energy Metabolism/genetics , Lymphocyte Activation/genetics , Proto-Oncogene Proteins c-myc/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Immunomodulation/genetics , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic
2.
J Biol Chem ; 293(16): 6187-6200, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29449372

ABSTRACT

Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function.


Subject(s)
Cullin Proteins/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Conserved Sequence , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Lenalidomide/pharmacology , Ligands , Mice , Molecular Probes , Nuclear Proteins/drug effects , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , T-Lymphocytes/metabolism , Thalidomide/analogs & derivatives , Thalidomide/metabolism , Thalidomide/pharmacology , Transcription Factors/drug effects , Transcription Factors/metabolism , Triazoles/pharmacology , Ubiquitin/metabolism
3.
Blood ; 121(25): 5068-77, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23632888

ABSTRACT

Granulocyte-macrophage-colony-stimulating factor (GM-CSF) hypersensitivity is a hallmark of juvenile myelomonocytic leukemia (JMML) but has not been systematically shown in the related human disease chronic myelomonocytic leukemia (CMML). We find that primary CMML samples demonstrate GM-CSF-dependent hypersensitivity by hematopoietic colony formation assays and phospho-STAT5 (pSTAT5) flow cytometry compared with healthy donors. Among CMML patients, the pSTAT5 hypersensitive response positively correlated with high-risk disease, peripheral leukocytes, monocytes, and signaling-associated mutations. When compared with IL-3 and G-CSF, GM-CSF hypersensitivity was cytokine specific and thus a possible target for intervention in CMML. To explore this possibility, we treated primary CMML cells with KB003, a novel monoclonal anti-GM-CSF antibody, and JAK2 inhibitors. We found that an elevated proportion of immature GM-CSF receptor-α(R) subunit-expressing cells were present in the bone marrow myeloid compartment of CMML. In survival assays, we found that myeloid and monocytic progenitors were sensitive to GM-CSF signal inhibition. Our data indicate that a committed myeloid precursor expressing CD38 may represent the progenitor population with enhanced GM-CSF dependence in CMML, consistent with results in JMML. These preclinical data indicate that GM-CSF signaling inhibitors merit further investigation in CMML and that GM-CSFR expression on myeloid progenitors may be a biomarker for this therapy.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Leukemia, Myelomonocytic, Chronic/metabolism , STAT5 Transcription Factor/metabolism , Flow Cytometry , Humans , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Surface Plasmon Resonance
4.
Adv Hematol ; 2012: 513702, 2012.
Article in English | MEDLINE | ID: mdl-22888354

ABSTRACT

The immunomodulatory agent, lenalidomide, is a structural analogue of thalidomide approved by the US Food and Drug Administration for the treatment of myelodysplastic syndrome (MDS) and multiple myeloma (MM). This agent is also currently under active investigation for the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), as well as in drug combinations for some solid tumors and mantle cell lymphoma (MCL). Although treatment with lenalidomide has translated into a significant extension in overall survival in MM and MDS and has superior safety and efficacy relative to thalidomide, the mechanism of action as it relates to immune modulation remains elusive. Based on preclinical models and clinical trials, lenalidomide, as well as other structural thalidomide derivatives, enhances the proliferative and functional capacity of T-lymphocytes and amplifies costimulatory signaling pathways that activate effector responses and suppress inflammation. This paper summarizes our current understanding of T- and natural killer (NK) cell pathways that are modified by lenalidomide in hematopoietic neoplasms to inform future decisions about potential combination therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...