Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
PLoS Pathog ; 20(6): e1011883, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838057

ABSTRACT

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.

2.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014009

ABSTRACT

Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by Streptococcus pneumoniae (Spn-H 2 O 2 ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci. In the absence of capsule and Spn-H 2 O 2 , host intracellular heme exhibited toxicity towards pneumococci, thus acting as an antibacterial mechanism. Further investigation revealed that heme-mediated toxicity required the ABC transporter GlnPQ. In vivo experiments demonstrated that pneumococci release H 2 O 2 to cause cytotoxicity in bronchi and alveoli through the non-proteolytic degradation of intracellular proteins such as actin, tubulin and GAPDH. Overall, our findings uncover a mechanism of lung toxicity mediated by oxidative stress that favor the growth of encapsulated pneumococci suggesting a therapeutic potential by targeting oxidative reactions. Highlights: Oxidation of hemoglobin by Streptococcus pneumoniae facilitates differentiation to encapsulated pneumococci in vivo Differentiated S. pneumoniae produces capsule and hydrogen peroxide (Spn-H 2 O 2 ) as defense mechanism against host heme-mediated toxicity. Spn-H 2 O 2 -induced lung toxicity causes the oxidation and non-proteolytic degradation of intracellular proteins tubulin, actin, and GAPDH. The ABC transporter GlnPQ is a heme-binding complex that makes Spn susceptible to heme toxicity.

3.
mBio ; 14(1): e0332522, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36625598

ABSTRACT

Streptococcus pneumoniae colonizes the human nasopharynx and causes several diseases. Pneumococcal vaccines target the polysaccharide capsule and prevent most serious disease, but there has been an increase in the prevalence of nonencapsulated S. pneumoniae (NESp). Previously, it was thought that a capsule was necessary to cause invasive disease. NESp strains expressing the oligopeptide transporters AliC and AliD have been isolated from patients with invasive disease. The AliC and AliD oligopeptide transporters regulate the expression of several genes, including choline binding protein AC (CbpAC) (a homolog of PspA), which aids in reducing C3b deposition. It is hypothesized that by altering CbpAC expression, AliC and AliD provide protection from classical complement-mediated clearance by reducing C-reactive protein (CRP) binding. Our study demonstrates that AliC and AliD regulate CbpAC expression in NESp and that AliD found in certain serotypes of encapsulated strains regulates PspA expression. C3b deposition was increased in the NESp ΔaliD and encapsulated mutants in comparison to the wild type. NESp strains expressing AliC and AliD have a significant decrease in C1q and CRP deposition in comparison to the ΔaliC ΔaliD mutant. The complement protein C1q is required for NESp clearance in a murine model and increases opsonophagocytosis. By regulating CbpAC expression, NESp inhibits CRP binding to the bacterial surface and blocks classical complement activation, leading to greater systemic survival and virulence. Due to the increase in the prevalence of NESp, it is important to gain a better understanding of NESp virulence mechanisms that aid in establishing disease and persistence within a host by avoiding clearance by the immune system. IMPORTANCE Streptococcus pneumoniae (pneumococcus) can cause a range of diseases. Although there is a robust pneumococcal vaccination program that reduces invasive pneumococcal disease by targeting various polysaccharide capsules, there has been an increase in the isolation of nonvaccine serotypes and nonencapsulated S. pneumoniae (NESp) strains. While most studies of pneumococcal pathogenesis have focused on encapsulated strains, there is little understanding of how NESp causes disease. NESp lacks a protective capsule but contains novel genes, such as aliC and aliD, which have been shown to regulate the expression of numerous genes and to be required for NESp virulence and immune evasion. Furthermore, NESp strains have high transformation efficiencies and harbor resistance to multiple drugs. This could be deleterious to current treatment strategies employed for pneumococcal disease as NESp can be a reservoir of drug resistance genes. Therefore, deciphering how NESp survives within a host and facilitates disease is a necessity that will allow the fabrication of improved, broad-spectrum treatments and preventatives against pneumococcal disease. Our study provides a better understanding of NESp virulence mechanisms during host-pathogen interactions through the examination of genes directly regulated by the NESp proteins AliC and AliD.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Choline/metabolism , Complement C1q , Darbepoetin alfa/metabolism , Membrane Transport Proteins/metabolism , Pneumococcal Infections/microbiology
4.
Open Forum Infect Dis ; 8(12): ofab576, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934775

ABSTRACT

The sudden emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have greatly accelerated the adoption of novel vaccine strategies, which otherwise would have likely languished for years. In this light, vaccines for certain other pathogens could certainly benefit from reconsideration. One such pathogen is Streptococcus pneumoniae (pneumococcus), an encapsulated bacterium that can express >100 antigenically distinct serotypes. Current pneumococcal vaccines are based exclusively on capsular polysaccharide-either purified alone or conjugated to protein. Since the introduction of conjugate vaccines, the valence of pneumococcal vaccines has steadily increased, as has the associated complexity and cost of production. There are many pneumococcal proteins invariantly expressed across all serotypes, which have been shown to induce robust immune responses in animal models. These proteins could be readily produced using recombinant DNA technology or by mRNA technology currently used in SARS-CoV-2 vaccines. A door may be opening to new opportunities in affordable and broadly protective vaccines.

5.
Infect Immun ; 89(12): e0046321, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34543118

ABSTRACT

Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.


Subject(s)
Deoxycholic Acid/pharmacology , Host-Pathogen Interactions , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development , Animals , Bile Acids and Salts/metabolism , Deoxycholic Acid/metabolism , Disease Models, Animal , Disease Susceptibility , Drug Resistance, Bacterial , Humans , Mice , Mutation , N-Acetylmuramoyl-L-alanine Amidase/genetics , Nasopharynx/microbiology , Pneumococcal Infections/metabolism , Streptococcus pneumoniae/genetics
6.
mSphere ; 5(6)2020 12 09.
Article in English | MEDLINE | ID: mdl-33298575

ABSTRACT

Streptococcus pneumoniae and other streptococci produce a greenish halo on blood agar plates referred to as alpha-hemolysis. This phenotype is utilized by clinical microbiology laboratories to report culture findings of alpha-hemolytic streptococci, including S. pneumoniae, and other bacteria. The alpha-hemolysis halo on blood agar plates has been related to the hemolytic activity of pneumococcal pneumolysin (Ply) or, to a lesser extent, to lysis of erythrocytes by S. pneumoniae-produced hydrogen peroxide. We investigated the molecular basis of the alpha-hemolysis halo produced by S. pneumoniae Wild-type strains TIGR4, D39, R6, and EF3030 and isogenic derivative Δply mutants produced similar alpha-hemolytic halos on blood agar plates, while cultures of hydrogen peroxide knockout ΔspxB ΔlctO mutants lacked this characteristic halo. Moreover, in the presence of catalase, the alpha-hemolysis halo was absent in cultures of the wild-type (wt) and Δply mutant strains. Spectroscopic studies demonstrated that culture supernatants of TIGR4 released hemoglobin-bound heme (heme-hemoglobin) from erythrocytes and oxidized oxy-hemoglobin to met-hemoglobin within 30 min of incubation. As expected, given Ply hemolytic activity and that hydrogen peroxide contributes to the release of Ply, TIGR4Δply and ΔspxB ΔlctO isogenic mutants had significantly decreased release of heme-hemoglobin from erythrocytes. However, TIGR4Δply that produces hydrogen peroxide oxidized oxy-hemoglobin to met-hemoglobin, whereas TIGR4ΔspxB ΔlctO failed to produce oxidation of oxy-hemoglobin. Studies conducted with all other wt strains and isogenic mutants resulted in similar findings. We demonstrated that the so-called alpha-hemolysis halo is caused by the oxidation of oxy-hemoglobin (Fe+2) to a non-oxygen-binding met-hemoglobin (Fe+3) by S. pneumoniae-produced hydrogen peroxide.IMPORTANCE There is a misconception that alpha-hemolysis observed on blood agar plate cultures of Streptococcus pneumoniae and other alpha-hemolytic streptococci is produced by a hemolysin or, alternatively, by lysis of erythrocytes caused by hydrogen peroxide. We noticed in the course of our investigations that wild-type S. pneumoniae strains and hemolysin (e.g., pneumolysin) knockout mutants produced the alpha-hemolytic halo on blood agar plates. In contrast, hydrogen peroxide-defective mutants prepared in four different strains lacked the characteristic alpha-hemolysis halo. We also demonstrated that wild-type strains and pneumolysin mutants oxidized oxy-hemoglobin to met-hemoglobin. Hydrogen peroxide knockout mutants, however, failed to oxidize oxy-hemoglobin. Therefore, the greenish halo formed on cultures of S. pneumoniae and other so-called alpha-hemolytic streptococci is caused by the oxidation of oxy-hemoglobin produced by hydrogen peroxide. Oxidation of oxy-hemoglobin to the nonbinding oxygen form, met-hemoglobin, might occur in the lungs during pneumococcal pneumonia.


Subject(s)
Hydrogen Peroxide/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology , Streptolysins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Lung/microbiology , Oxyhemoglobins/genetics , Oxyhemoglobins/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development , Streptolysins/genetics
7.
Sci Rep ; 10(1): 18932, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144660

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a principal cause of bacterial middle ear infections, pneumonia, and meningitis. Capsule-targeted pneumococcal vaccines have likely contributed to increased carriage of nonencapsulated S. pneumoniae (NESp). Some NESp lineages are associated with highly efficient DNA uptake and transformation frequencies. However, NESp strains lack capsule that may increase disease severity. We tested the hypothesis that NESp could acquire capsule during systemic infection and transform into more virulent pneumococci. We reveal that NESp strains MNZ67 and MNZ41 are highly transformable and resistant to multiple antibiotics. Natural transformation of NESp when co-administered with heat-killed encapsulated strain WU2 in a murine model of systemic infection resulted in encapsulation of NESp and increased virulence during bacteremia. Functional capsule production increased the pathogenic potential of MNZ67 by significantly decreasing complement deposition on the bacterial surface. However, capsule acquisition did not further decrease complement deposition on the relatively highly pathogenic strain MNZ41. Whole genome sequencing of select transformants demonstrated that recombination of up to 56.7 kbp length occurred at the capsule locus, along with additional recombination occurring at distal sites harboring virulence-associated genes. These findings indicate NESp can compensate for lack of capsule production and rapidly evolve into more virulent strains.


Subject(s)
Bacterial Capsules/genetics , Drug Resistance, Bacterial , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacteremia , Disease Models, Animal , Mice , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Transformation, Bacterial , Virulence , Whole Genome Sequencing
8.
PLoS One ; 15(7): e0236389, 2020.
Article in English | MEDLINE | ID: mdl-32730276

ABSTRACT

Streptococcus pneumoniae (Pneumococcus) infections affect millions of people worldwide, cause serious mortality and represent a major economic burden. Despite recent successes due to pneumococcal vaccination and antibiotic use, Pneumococcus remains a significant medical problem. Airway epithelial cells, the primary responders to pneumococcal infection, orchestrate an extracellular antimicrobial system consisting of lactoperoxidase (LPO), thiocyanate anion and hydrogen peroxide (H2O2). LPO oxidizes thiocyanate using H2O2 into the final product hypothiocyanite that has antimicrobial effects against a wide range of microorganisms. However, hypothiocyanite's effect on Pneumococcus has never been studied. Our aim was to determine whether hypothiocyanite can kill S. pneumoniae. Bactericidal activity was measured in a cell-free in vitro system by determining the number of surviving pneumococci via colony forming units on agar plates, while bacteriostatic activity was assessed by measuring optical density of bacteria in liquid cultures. Our results indicate that hypothiocyanite generated by LPO exerted robust killing of both encapsulated and nonencapsulated pneumococcal strains. Killing of S. pneumoniae by a commercially available hypothiocyanite-generating product was even more pronounced than that achieved with laboratory reagents. Catalase, an H2O2 scavenger, inhibited killing of pneumococcal by hypothiocyanite under all circumstances. Furthermore, the presence of the bacterial capsule or lytA-dependent autolysis had no effect on hypothiocyanite-mediated killing of pneumococci. On the contrary, a pneumococcal mutant deficient in pyruvate oxidase (main bacterial H2O2 source) had enhanced susceptibility to hypothiocyanite compared to its wild-type strain. Overall, results shown here indicate that numerous pneumococcal strains are susceptible to LPO-generated hypothiocyanite.


Subject(s)
Lactoperoxidase/metabolism , Oxidative Stress/drug effects , Streptococcus pneumoniae/enzymology , Thiocyanates/pharmacology , Anti-Infective Agents/pharmacology , Autolysis , Bacterial Capsules/drug effects , Catalase/metabolism , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Pyruvate Oxidase/deficiency , Pyruvate Oxidase/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development
9.
mSphere ; 4(6)2019 12 11.
Article in English | MEDLINE | ID: mdl-31826968

ABSTRACT

Pneumococcal surface protein A (PspA) elicits antibody protective against lethal challenge by Streptococcus pneumoniae and is a candidate noncapsular antigen for inclusion in vaccines. Evaluation of immunity to PspA in human trials would be greatly facilitated by an in vitro functional assay able to distinguish protective from nonprotective antibodies to PspA. Mouse monoclonal antibodies (MAbs) to PspA can mediate killing by human granulocytes in the modified surface killing assay (MSKA). To determine if the MSKA can distinguish between protective and nonprotective MAbs, we examined seven MAbs to PspA. All bound recombinant PspA, as detected by enzyme-linked immunosorbent assay and Western blotting; four gave strong passive protection against fatal challenge, two were nonprotective, and the seventh one only delayed death. The four that were able to provide strong passive protection were also most able to enhance killing in the MSKA, the two that were not protective in mice were not effective in the MSKA, and the MAb that was only weakly protective in mice was weakly effective in the MSKA (P < 0.001). One of the four most protective MAbs tested reacted to the proline-rich domain of PspA. Two of the other most protective MAbs and the weakly protective MAb reacted with a fragment from PspA's α-helical domain (αHD), containing amino acids (aa) 148 to 247 from the N terminus of PspA. The fourth highly protective MAb recognized none of the overlapping 81- or 100-aa fragments of PspA. The two nonprotective MAbs recognized a more N-terminal αHD fragment (aa 48 to 147).IMPORTANCE The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the αHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the αHD are highly conformational (≥100-amino-acid fragments of the αHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by ≤15-amino-acid sequences.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Blood Bactericidal Activity , Immunoassay/methods , Streptococcus pneumoniae/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites , Disease Models, Animal , Immunization, Passive , Mice , Neutrophils/immunology , Pneumococcal Infections/prevention & control , Protein Binding , Treatment Outcome
11.
mSphere, v. 4, n. 6, p. e00589-19, dec. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2880

ABSTRACT

Pneumococcal surface protein A (PspA) elicits antibody protective against lethal challenge by Streptococcus pneumoniae and is a candidate noncapsular antigen for inclusion in vaccines. Evaluation of immunity to PspA in human trials would be greatly facilitated by an in vitro functional assay able to distinguish protective from nonprotective antibodies to PspA. Mouse monoclonal antibodies (MAbs) to PspA can mediate killing by human granulocytes in the modified surface killing assay (MSKA). To determine if the MSKA can distinguish between protective and nonprotective MAbs, we examined seven MAbs to PspA. All bound recombinant PspA, as detected by enzyme-linked immunosorbent assay and Western blotting; four gave strong passive protection against fatal challenge, two were nonprotective, and the seventh one only delayed death. The four that were able to provide strong passive protection were also most able to enhance killing in the MSKA, the two that were not protective in mice were not effective in the MSKA, and the MAb that was only weakly protective in mice was weakly effective in the MSKA (P < 0.001). One of the four most protective MAbs tested reacted to the proline-rich domain of PspA. Two of the other most protective MAbs and the weakly protective MAb reacted with a fragment from PspA’s a-helical domain (aHD), containing amino acids (aa) 148 to 247 from the N terminus of PspA. The fourth highly protective MAb recognized none of the overlapping 81- or 100-aa fragments of PspA. The two nonprotective MAbs recognized a more N-terminal aHD fragment (aa 48 to 147). IMPORTANCE The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the aHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the aHD are highly conformational (=100-amino-acid fragments of the aHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by =15-amino-acid sequences.

12.
mSphere ; 4(6): e00589-19, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17296

ABSTRACT

ABSTRACT Pneumococcal surface protein A (PspA) elicits antibody protective against lethal challenge by Streptococcus pneumoniae and is a candidate noncapsular antigen for inclusion in vaccines. Evaluation of immunity to PspA in human trials would be greatly facilitated by an in vitro functional assay able to distinguish protective from nonprotective antibodies to PspA. Mouse monoclonal antibodies (MAbs) to PspA can mediate killing by human granulocytes in the modified surface killing assay (MSKA). To determine if the MSKA can distinguish between protective and nonprotective MAbs, we examined seven MAbs to PspA. All bound recombinant PspA, as detected by enzyme-linked immunosorbent assay and Western blotting; four gave strong passive protection against fatal challenge, two were nonprotective, and the seventh one only delayed death. The four that were able to provide strong passive protection were also most able to enhance killing in the MSKA, the two that were not protective in mice were not effective in the MSKA, and the MAb that was only weakly protective in mice was weakly effective in the MSKA (P < 0.001). One of the four most protective MAbs tested reacted to the proline-rich domain of PspA. Two of the other most protective MAbs and the weakly protective MAb reacted with a fragment from PspA’s a-helical domain (aHD), containing amino acids (aa) 148 to 247 from the N terminus of PspA. The fourth highly protective MAb recognized none of the overlapping 81- or 100-aa fragments of PspA. The two nonprotective MAbs recognized a more N-terminal aHD fragment (aa 48 to 147). IMPORTANCE The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the aHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the aHD are highly conformational (=100-amino-acid fragments of the aHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by =15-amino-acid sequences.

13.
Open Forum Infect Dis ; 5(7): ofy135, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30581884

ABSTRACT

We discuss 3 patients presenting with pneumonia associated with nonencapsulated Streptococcus pneumoniae (NESp), an emerging pathogen commonly causing upper respiratory infections. Clinical isolates obtained from these patients were characterized to evaluate their respective antibiotic resistance and virulence mechanisms. We demonstrate that NESp resistant to classical drug treatments are isolated during pneumonia.

14.
mSphere ; 3(3)2018.
Article in English | MEDLINE | ID: mdl-29720526

ABSTRACT

Pneumonia is a pulmonary disease affecting people of all ages and is consistently a leading cause of childhood mortality and adult hospitalizations. Streptococcus pneumoniae and Pseudomonas aeruginosa are major lung pathogens commonly associated with community-acquired and nosocomial pneumonia. Additionally, mixed lung infections involving these bacterial pathogens are increasing in prevalence and are frequently more severe than single infections. The cooperative interactions of these two pathogens that impact pulmonary disease severity are understudied. A major secreted virulence factor of P. aeruginosa, protease IV (PIV), cleaves interleukin 22 (IL-22), a cytokine essential for maintaining innate mucosal defenses against extracellular pathogens. Here, we investigate the ability of PIV to augment the virulence of a pneumococcal strain with limited virulence, S. pneumoniae EF3030, in a C57BL/6 murine model of pneumonia. We demonstrate that pulmonary coinfection involving P. aeruginosa 103-29 and S. pneumoniae EF3030 results in pneumococcal bacteremia that is abrogated during pneumococcal coinfection with a PIV-deficient strain. Furthermore, intratracheal administration of exogenous PIV and EF3030 resulted in abundant immune cell infiltration into the lung with large abscess formation, as well as severe bacteremia leading to 100% mortality. Heat-inactivated PIV did not worsen pneumonia or reliably induce bacteremia, suggesting that the specific activity of PIV is required. Our studies also show that PIV depletes IL-22 in vivo Moreover, PIV-mediated enhancement of pneumonia and disease severity was dependent on the expression of pneumolysin (Ply), a prominent virulence factor of S. pneumoniae Altogether, we reveal that PIV and Ply additively potentiate pneumonia in a murine model of lung infection.IMPORTANCES. pneumoniae remains the leading cause of bacterial pneumonia despite widespread use of pneumococcal vaccines, forcing the necessity for appropriate treatment to control pneumococcal infections. Coinfections involving S. pneumoniae with other bacterial pathogens threaten antibiotic treatment strategies and disease outcomes. Currently, there is not an effective treatment for alveolar-capillary barrier dysfunction that precedes bacteremia. An understanding of the dynamics of host-pathogen interactions during single and mixed pulmonary infections could elucidate proper treatment strategies needed to prevent or reduce invasive disease. Antibiotic treatment decreases bacterial burden in the lung but also increases acute pathology due to cytotoxins released via antibiotic-induced bacterial lysis. Therefore, targeted therapeutics that inhibit or counteract the effects of bacterial proteases and toxins are needed in order to limit pathology and disease progression. This study identifies the cooperative effect of PIV and Ply, products of separate lung pathogens that additively alter the lung environment and facilitate invasive disease.


Subject(s)
Bacteremia/pathology , Coinfection/pathology , Microbial Interactions , Peptide Hydrolases/metabolism , Pneumonia, Pneumococcal/pathology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/enzymology , Animals , Bacteremia/microbiology , Bacterial Proteins/metabolism , Blood/microbiology , Coinfection/microbiology , Disease Models, Animal , Interleukins/analysis , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Pneumonia, Pneumococcal/complications , Pneumonia, Pneumococcal/microbiology , Pseudomonas Infections/microbiology , Serine Endopeptidases/metabolism , Streptolysins/metabolism , Survival Analysis , Interleukin-22
15.
J Infect Dis ; 217(10): 1637-1644, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29394357

ABSTRACT

Background: Current Streptococcus pneumoniae vaccines selectively target capsular polysaccharide of specific serotypes, leading to an increase in nonencapsulated S. pneumoniae (NESp). Cocolonization by encapsulated pneumococci and NESp increases the opportunity for intraspecies genetic exchange. Acquisition of NESp genes by encapsulated pneumococci could alter virulence and help vaccine-targeted serotypes persist in the host. Methods: Adhesion and invasion assays were performed using immortalized human pharyngeal or lung epithelial cells. In vivo models assessing murine nasopharyngeal colonization and pneumonia, as well as chinchilla otitis media (OM), were also used. Results: Pneumococcal surface protein K (PspK) expression increased encapsulated pneumococcal adhesion and invasion of lung cells and enhanced virulence during pneumonia and OM. Additionally, PspK increased nasopharyngeal colonization, persistence in the lungs, and persistence in the middle ear when expressed in a capsule deletion mutant. Competition experiments demonstrated encapsulated pneumococci expressing PspK also had a selective advantage in both the lungs and nasopharynx. Conclusions: PspK increases pneumococcal virulence during pneumonia and OM. PspK also partially compensates for loss of virulence in the absence of capsule. Additionally, PspK provides a selective advantage in a competitive environment. Therefore, acquisition of PspK increases encapsulated virulence in a condition-dependent manner. Together, these studies demonstrate risks associated with pneumococcal intraspecies genetic exchange.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Virulence Factors/genetics , Virulence/genetics , A549 Cells , Animals , Cell Line, Tumor , Humans , Lung/microbiology , Mice , Mice, Inbred C57BL , Nasopharynx/microbiology , Otitis Media/microbiology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Serogroup , Streptococcus pneumoniae/immunology
16.
mBio ; 9(1)2018 01 16.
Article in English | MEDLINE | ID: mdl-29339428

ABSTRACT

Nonencapsulated Streptococcus pneumoniae (NESp) is an emerging human pathogen that colonizes the nasopharynx and is associated with noninvasive diseases such as otitis media (OM), conjunctivitis, and nonbacteremic pneumonia. Since capsule expression was previously thought to be necessary for establishment of invasive pneumococcal disease (IPD), serotype-specific polysaccharide capsules are targeted by currently licensed pneumococcal vaccines. Yet, NESp expressing oligopeptide binding proteins AliC and AliD have been isolated during IPD. Thus, we hypothesize AliC and AliD are major NESp virulence determinants that facilitate persistence and development of IPD. Our study reveals that NESp expressing AliC and AliD have intensified virulence compared to isogenic mutants. Specifically, we demonstrate AliC and AliD enhance murine nasopharyngeal colonization and pulmonary infection and are required for OM in a chinchilla model. Furthermore, AliC and AliD increase pneumococcal survival in chinchilla whole blood and aid in resistance to killing by human leukocytes. Comparative proteome analysis revealed significant alterations in protein levels when AliC and AliD were absent. Virulence-associated proteins, including a pneumococcal surface protein C variant (CbpAC), were significantly downregulated, while starvation response indicators were upregulated in the double mutant relative to wild-type levels. We also reveal that differentially expressed CbpAC was essential for NESp adherence to epithelial cells, virulence during OM, reduction of C3b deposition on the NESp surface, and binding to nonspecific IgA. Altogether, the rise in NESp prevalence urges the need to understand how NESp establishes disease and persists in a host. This study highlights the roles of AliC, AliD, and CbpAC in the pathogenesis of NESp.IMPORTANCE Despite the effective, widespread use of licensed pneumococcal vaccines over many decades, pneumococcal infections remain a worldwide burden resulting in high morbidity and mortality. NESp subpopulations are rapidly rising in the wake of capsule-targeted vaccine strategies, yet there is very little knowledge on NESp pathogenic potential and virulence mechanisms. Although NESp lacks a protective capsule, NESp lineages expressing AliC and AliD have been associated with systemic infections. Furthermore, higher antibiotic resistance rates and transformation efficiencies associated with emerging NESp threaten treatment strategies needed to control pneumococcal infections and transmission. Elucidating how NESp survives within a host and establishes disease is necessary for development of broadened pneumococcal prevention methods. Our study identifies virulence determinants and host survival mechanisms employed by NESp with a high pathogenic potential. Moreover, our study also identifies virulence determinants shared by NESp and encapsulated strains that may serve as broad prevention and therapeutic targets.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Carrier State/microbiology , Lipoproteins/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/pathogenicity , Virulence Factors/metabolism , Animals , Bacterial Adhesion , Bacterial Proteins/genetics , Blood Bactericidal Activity , Carrier Proteins/genetics , Cell Line , Chinchilla , Disease Models, Animal , Epithelial Cells/microbiology , Gene Deletion , Humans , Lipoproteins/genetics , Mice , Microbial Viability , Pneumococcal Infections/pathology , Proteome/analysis , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/genetics , Virulence , Virulence Factors/genetics
17.
PLoS One ; 12(6): e0179159, 2017.
Article in English | MEDLINE | ID: mdl-28586394

ABSTRACT

Streptococcus pneumoniae is commonly found in the human nasopharynx and is the causative agent of multiple diseases. Since invasive pneumococcal infections are associated with encapsulated pneumococci, the capsular polysaccharide is the target of licensed pneumococcal vaccines. However, there is an increasing distribution of non-vaccine serotypes, as well as nonencapsulated S. pneumoniae (NESp). Both encapsulated and nonencapsulated pneumococci possess the polyamine oligo-transport operon (potABCD). Previous research has shown inactivation of the pot operon in encapsulated pneumococci alters protein expression and leads to a significant reduction in pneumococcal murine colonization, but the role of the pot operon in NESp is unknown. Here, we demonstrate deletion of potD from the NESp NCC1 strain MNZ67 does impact expression of the key proteins pneumolysin and PspK, but it does not inhibit murine colonization. Additionally, we show the absence of potD significantly increases biofilm production, both in vitro and in vivo. In a chinchilla model of otitis media (OM), the absence of potD does not significantly affect MNZ67 virulence, but it does significantly reduce the pathogenesis of the virulent encapsulated strain TIGR4 (serotype 4). Deletion of potD also significantly reduced persistence of TIGR4 in the lungs but increased persistence of PIP01 in the lungs. We conclude the pot operon is important for the regulation of protein expression and biofilm formation in both encapsulated and NCC1 nonencapsulated Streptococcus pneumoniae. However, in contrast to encapsulated pneumococcal strains, polyamine acquisition via the pot operon is not required for MNZ67 murine colonization, persistence in the lungs, or full virulence in a model of OM. Therefore, NESp virulence regulation needs to be further established to identify potential NESp therapeutic targets.


Subject(s)
Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Polysaccharides, Bacterial/metabolism , Streptococcus pneumoniae/genetics , Animals , Biofilms/drug effects , Biofilms/growth & development , Humans , Mice , Nasopharynx/microbiology , Nasopharynx/pathology , Operon/genetics , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/therapeutic use , Polysaccharides, Bacterial/genetics , Serogroup , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/pathogenicity
18.
BMC Microbiol ; 16(1): 271, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27829373

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is one of the leading causes of community acquired pneumonia and acute otitis media. Certain aspects of S. pneumoniae's virulence are dependent upon expression and release of the protein toxin pneumolysin (PLY) and upon the activity of the peroxide-producing enzyme, pyruvate oxidase (SpxB). We investigated the possible synergy of these two proteins and identified that release of PLY is enhanced by expression of SpxB prior to stationary phase growth. RESULTS: Mutants lacking the spxB gene were defective in PLY release and complementation of spxB restored PLY release. This was demonstrated by cytotoxic effects of sterile filtered supernatants upon epithelial cells and red blood cells. Additionally, peroxide production appeared to contribute to the mechanism of PLY release since a significant correlation was found between peroxide production and PLY release among a panel of clinical isolates. Exogenous addition of H2O2 failed to induce PLY release and catalase supplementation prevented PLY release in some strains, indicating peroxide may exert its effect intracellularly or in a strain-dependent manner. SpxB expression did not trigger bacterial cell death or LytA-dependent autolysis, but did predispose cells to deoxycholate lysis. CONCLUSIONS: Here we demonstrate a novel link between spxB expression and PLY release. These findings link liberation of PLY toxin to oxygen availability and pneumococcal metabolism.


Subject(s)
Pyruvate Oxidase/metabolism , Streptococcus pneumoniae/metabolism , Streptolysins/metabolism , Autolysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase , DNA, Bacterial/genetics , Epithelial Cells/microbiology , Erythrocytes/microbiology , Genes, Bacterial , Hydrogen Peroxide/metabolism , Oxygen , Pyruvate Oxidase/genetics , Sequence Deletion , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Streptolysins/genetics , Virulence
19.
Article in English | MEDLINE | ID: mdl-27242973

ABSTRACT

Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated S. pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surface proteins unique to NESp. A chinchilla model of otitis media (OM) was used to determine the effect various pneumococcal mutations have on pathogenesis in both NESp and encapsulated pneumococci. Epithelial cell adhesion and invasion assays were used to examine the effects in relation to deletion of intrinsic genes or expression of novel genes. A mouse model of colonization was also utilized for comparison of various pneumococcal mutants. It was determined that pneumococcal surface protein K (PspK) and pneumolysin (Ply) affect NESp middle ear pathogenesis, but only PspK affected epithelial cell adhesion. Experiments in an OM model were done with encapsulated strains testing the importance of native virulence factors and treatment of OM. First, a triple deletion of the common virulence factors PspA, PspC, and Ply, (ΔPAC), from an encapsulated background abolished virulence in an OM model while a PspC mutant had detectable, but reduced amounts of recoverable bacteria compared to wildtype. Next, treatment of OM was effective when starting antibiotic treatment within 24 h with resolution by 48 h post-treatment. Expression of NESp-specific virulence factor PspK in an encapsulated strain has not been previously studied, and we showed significantly increased adhesion and invasion of human epithelial cells by pneumococci. Murine colonization was not significantly increased when an encapsulated strain expressed PspK, but colonization was increased when a capsule mutant expressed PspK. The ability of PspK expression to increase colonization in a capsule mutant despite no increase in adhesion can be attributed to other functions of PspK, such as sIgA binding or immune modulation. OM is a substantial economic burden, thus a better understanding of both encapsulated pneumococcal pathogenesis and the emerging pathogen NESp is necessary for effective prevention and treatment.


Subject(s)
Host-Pathogen Interactions , Membrane Proteins/metabolism , Otitis Media/pathology , Pneumococcal Infections/pathology , Streptococcus pneumoniae/pathogenicity , Streptolysins/metabolism , Virulence Factors/metabolism , Animals , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Chinchilla , Disease Models, Animal , Endocytosis , Epithelial Cells/microbiology , Gene Deletion , Gene Expression , Humans , Membrane Proteins/genetics , Otitis Media/metabolism , Otitis Media/microbiology , Pneumococcal Infections/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Streptolysins/genetics , Virulence
20.
IDCases ; 4: 56-8, 2016.
Article in English | MEDLINE | ID: mdl-27144125

ABSTRACT

Streptococcus pneumoniae is an important human pathogen. To cause disease, it must first colonize the nasopharynx. The widespread use of pneumococcal-conjugate vaccines which target the capsular polysaccharide has led to decreased nasopharyngeal carriage of vaccine serotypes, but a concomitant increase in carriage of non-vaccine serotypes and nonencapsulated S. pneumoniae (NESp). Some NESp express pneumococcal surface protein K (PspK), a virulence factor shown to contribute to nasopharyngeal colonization. We present the case of a child with chronic adenoiditis caused by a PspK(+) NESp. We tested the pneumococcal isolate, designated C144.66, for antimicrobial resistance, the presence of the pspK gene and the expression of PspK. Sequence typing and genome sequencing were performed. C144.66 was found to be resistant to erythromycin and displayed intermediate resistance to penicillin and trimethoprim/sulfamethoxazole. C144.66 has the pspK gene in place of the capsule locus. Additionally, PspK expression was confirmed by flow cytometry. NESp are a growing concern as an emerging human pathogen, as current pneumococcal vaccines do not confer immunity against them. An inability to vaccinate against NESp may result in increased carriage and associated pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...