Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Cancer Res ; 27(15): 4265-4276, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34341053

ABSTRACT

PURPOSE: While immune checkpoint blockade (ICB) has become a pillar of cancer treatment, biomarkers that consistently predict patient response remain elusive due to the complex mechanisms driving immune response to tumors. We hypothesized that a multi-dimensional approach modeling both tumor and immune-related molecular mechanisms would better predict ICB response than simpler mutation-focused biomarkers, such as tumor mutational burden (TMB). EXPERIMENTAL DESIGN: Tumors from a cohort of patients with late-stage melanoma (n = 51) were profiled using an immune-enhanced exome and transcriptome platform. We demonstrate increasing predictive power with deeper modeling of neoantigens and immune-related resistance mechanisms to ICB. RESULTS: Our neoantigen burden score, which integrates both exome and transcriptome features, more significantly stratified responders and nonresponders (P = 0.016) than TMB alone (P = 0.049). Extension of this model to include immune-related resistance mechanisms affecting the antigen presentation machinery, such as HLA allele-specific LOH, resulted in a composite neoantigen presentation score (NEOPS) that demonstrated further increased association with therapy response (P = 0.002). CONCLUSIONS: NEOPS proved the statistically strongest biomarker compared with all single-gene biomarkers, expression signatures, and TMB biomarkers evaluated in this cohort. Subsequent confirmation of these findings in an independent cohort of patients (n = 110) suggests that NEOPS is a robust, novel biomarker of ICB response in melanoma.


Subject(s)
Drug Resistance, Neoplasm/immunology , Melanoma/drug therapy , Melanoma/immunology , Models, Immunological , Forecasting , Humans , Treatment Outcome
2.
J Cell Mol Med ; 21(12): 3224-3230, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28667701

ABSTRACT

The genetic aetiology of sporadic neuroblastoma is still largely unknown. We have identified diverse neuroblastoma susceptibility loci by genomewide association studies (GWASs); however, additional SNPs that likely contribute to neuroblastoma susceptibility prompted this investigation for identification of additional variants that are likely hidden among signals discarded by the multiple testing corrections used in the analysis of genomewide data. There is evidence suggesting the CDKN1B, coding for the cycle inhibitor p27Kip1, is involved in neuroblastoma. We thus assess whether genetic variants of CDKN1B are associated with neuroblastoma. We imputed all possible genotypes across CDKN1B locus on a discovery case series of 2101 neuroblastoma patients and 4202 genetically matched controls of European ancestry. The most significantly associated rs34330 was analysed in an independent Italian cohort of 311 cases and 709 controls. In vitro functional analysis was carried out in HEK293T and in neuroblastoma cell line SHEP-2, both transfected with pGL3-CDKN1B-CC or pGL3-CDKN1B-TT constructs. We identified an association of the rs34330 T allele (-79C/T) with the neuroblastoma risk (Pcombined = 0.002; OR = 1.17). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27Kip1 promoter (P < 0.05). Three independent sets of neuroblastoma tumours carrying -79TT genotype showed a tendency towards lower CDKN1B mRNA levels. Our study shows that a functional variant, associated with a reduced CDKN1B gene transcription, influences neuroblastoma susceptibility.


Subject(s)
Brain Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neuroblastoma/genetics , Polymorphism, Single Nucleotide , Alleles , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Case-Control Studies , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Frequency , Genome-Wide Association Study , HEK293 Cells , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , Plasmids/chemistry , Plasmids/metabolism , Promoter Regions, Genetic , Risk
3.
PLoS Genet ; 13(5): e1006787, 2017 May.
Article in English | MEDLINE | ID: mdl-28545128

ABSTRACT

Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16-1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21-1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis.


Subject(s)
Carboxypeptidases/genetics , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 4/genetics , Neuroblastoma/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Case-Control Studies , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins , Female , Gene Silencing , Homozygote , Humans , Male , Nuclear Proteins/genetics , Proteins/metabolism
4.
Nature ; 528(7582): 418-21, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26560027

ABSTRACT

Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells. Here we investigate the causal DNA variant at this locus and the mechanism by which it leads to neuroblastoma tumorigenesis. We first imputed all possible genotypes across the LMO1 locus and then mapped highly associated single nucleotide polymorphism (SNPs) to areas of chromatin accessibility, evolutionary conservation and transcription factor binding sites. We show that SNP rs2168101 G>T is the most highly associated variant (combined P = 7.47 × 10(-29), odds ratio 0.65, 95% confidence interval 0.60-0.70), and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is associated with tumour formation resides in a conserved GATA transcription factor binding motif. We show that the newly evolved protective TATA allele is associated with decreased total LMO1 expression (P = 0.028) in neuroblastoma primary tumours, and ablates GATA3 binding (P < 0.0001). We demonstrate allelic imbalance favouring the G-containing strand in tumours heterozygous for this SNP, as demonstrated both by RNA sequencing (P < 0.0001) and reporter assays (P = 0.002). These findings indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1 influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct modulation of LMO1 expression in cis, and this leads to an oncogenic dependency in tumour cells.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , LIM Domain Proteins/genetics , Neuroblastoma/genetics , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Acetylation , Alleles , Allelic Imbalance , Binding Sites , Epigenomics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genome-Wide Association Study , Genotype , Histones/chemistry , Histones/metabolism , Humans , Introns/genetics , Lysine/metabolism , Organ Specificity , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...