Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 80(4): 110, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000222

ABSTRACT

The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.


Subject(s)
Epilepsy , Intellectual Disability , Receptors, N-Methyl-D-Aspartate , Humans , Epilepsy/genetics , Mutation, Missense/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Mol Pharmacol ; 99(5): 399-411, 2021 05.
Article in English | MEDLINE | ID: mdl-33688039

ABSTRACT

NMDA receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic currents. These receptors are involved in several important brain functions, including learning and memory, and have also been implicated in neuropathological conditions and acute central nervous system injury, which has driven therapeutic interest in their modulation. The EU1794 series of positive and negative allosteric modulators of NMDA receptors has structural determinants of action near the preM1 helix that is involved in channel gating. Here, we describe the effects of the negative allosteric modulator EU1794-4 on GluN1/GluN2A channels studied in excised outside-out patches. Coapplication of EU1794-4 with a maximally effective concentration of glutamate and glycine increases the fraction of time the channel is open by nearly 1.5-fold, yet reduces single-channel conductance by increasing access of the channel to several subconductance levels, which has the net overall effect of reducing the macroscopic current. The lack of voltage-dependence of negative modulation suggests this is unrelated to a channel block mechanism. As seen with other NMDA receptor modulators that reduce channel conductance, EU1794-4 also reduces the Ca2+ permeability relative to monovalent cations of GluN1/GluN2A receptors. We conclude that EU1794-4 is a prototype for a new class of NMDA receptor negative allosteric modulators that reduce both the overall current that flows after receptor activation and the flux of Ca2+ ion relative to monovalent cations. SIGNIFICANCE STATEMENT: NMDA receptors are implicated in many neurological conditions but are challenging to target given their ubiquitous expression. Several newly identified properties of the negative allosteric modulator EU1794-4, including reducing Ca2+ flux through NMDA receptors and attenuating channel conductance, explain why this modulator reduces but does not eliminate NMDA receptor function. A modulator with these properties could have therapeutic advantages for indications in which attenuation of NMDA receptor function is beneficial, such as neurodegenerative disease and acute injury.


Subject(s)
Allosteric Regulation/drug effects , Calcium/metabolism , Permeability/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/drug effects , Brain/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , HEK293 Cells , Humans , Xenopus laevis
3.
ACS Chem Neurosci ; 12(1): 79-98, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33326224

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Allosteric Regulation , Models, Molecular , Receptors, N-Methyl-D-Aspartate/metabolism
4.
J Gen Physiol ; 152(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32221541

ABSTRACT

The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.


Subject(s)
Ion Channel Gating/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Animals , Binding Sites/physiology , Cell Line , HEK293 Cells , Humans , Protein Domains/physiology , Protein Subunits/metabolism , Xenopus
5.
Proteins ; 86(12): 1265-1276, 2018 12.
Article in English | MEDLINE | ID: mdl-30168177

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are transmembrane glutamate-binding ion channels that mediate neurotransmission in mammals. NMDA receptor subunits are tetrameric complexes of GluN1 and GluN2A-D subunits, encoded by the GRIN gene family. Of these subunits, GluN2B is suggested to be required for normal development of the central nervous system. A mutation identified in a patient with developmental delay, E413G, resides in the GluN2B ligand-binding domain and substantially reduces glutamate potency by an unknown mechanism. GluN2B Gly413, though near the agonist, is not in van der Waals contact with glutamate. Visual analysis of the GluN2B structure with the E413G mutation modeled suggests that replacement of Glu with Gly at this position increases solvent access to the ligand-binding domain. This was confirmed by molecular modeling, which showed that the ligand is more mobile in GluN2B-E413G than WT GluN2B. Evaluation of agonist occupancy using random accelerated molecular dynamics (RAMD) simulations predicts that the glutamate exits the binding-site more rapidly for GluN2B-E413G than WT receptors. This analysis was extended to other binding-site mutations, which produced qualitative agreement between experimentally determined EC50 values, deactivation time constants, and ligand motion within the binding-site. Furthermore, long sub-microsecond molecular dynamics simulations of the bi-lobed ligand-binding domain revealed that it adopted a cleft-open ligand-free state more often for GluN2B-E413G than wild-type GluN2B. This is consistent with the idea that L-glutamate binding is altered such that the ligand-binding domain occupies the open-cleft conformation associated with the closed channel.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Substitution , Binding Sites , Glutamic Acid/genetics , Glycine/genetics , HEK293 Cells , Humans , Ligands , Models, Molecular , Mutation , Protein Domains , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/genetics , Solvents
6.
J Physiol ; 596(17): 4057-4089, 2018 09.
Article in English | MEDLINE | ID: mdl-29917241

ABSTRACT

KEY POINTS: The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist-bound subunit must undergo some rate-limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB-based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain. ABSTRACT: NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di- and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist-bound subunit undergoes some rate-limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre-M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit-specific conformational changes may influence these pre-gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non-identical subunits.


Subject(s)
Glutamic Acid/metabolism , Ion Channel Gating , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission , HEK293 Cells , Humans , Molecular Dynamics Simulation , Protein Conformation , Protein Multimerization , Protein Subunits
7.
Neuron ; 98(3): 521-529.e3, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29656875

ABSTRACT

Alternative gene splicing gives rise to N-methyl-D-aspartate (NMDA) receptor ion channels with defined functional properties and unique contributions to calcium signaling in a given chemical environment in the mammalian brain. Splice variants possessing the exon-5-encoded motif at the amino-terminal domain (ATD) of the GluN1 subunit are known to display robustly altered deactivation rates and pH sensitivity, but the underlying mechanism for this functional modification is largely unknown. Here, we show through cryoelectron microscopy (cryo-EM) that the presence of the exon 5 motif in GluN1 alters the local architecture of heterotetrameric GluN1-GluN2 NMDA receptors and creates contacts with the ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, which are absent in NMDA receptors lacking the exon 5 motif. The unique interactions established by the exon 5 motif are essential to the stability of the ATD/LBD and LBD/LBD interfaces that are critically involved in controlling proton sensitivity and deactivation.


Subject(s)
Protein Splicing/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cell Line , Female , HEK293 Cells , Humans , Insecta , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, N-Methyl-D-Aspartate/chemistry , Xenopus laevis
8.
PLoS Genet ; 13(1): e1006536, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28095420

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.


Subject(s)
Ion Channel Gating , Mutation, Missense , Nerve Tissue Proteins/metabolism , Nervous System Diseases/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , HEK293 Cells , Humans , Memantine/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/physiology , Protein Domains , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus
9.
Toxicol Sci ; 153(1): 79-88, 2016 09.
Article in English | MEDLINE | ID: mdl-27287315

ABSTRACT

The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , MPTP Poisoning/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Levodopa/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vesicular Monoamine Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...