Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 22(1): 9-24, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22090374

ABSTRACT

Cell-type diversity is governed in part by differential gene expression programs mediated by transcription factor (TF) binding. However, there are few systematic studies of the genomic binding of different types of TFs across a wide range of human cell types, especially in relation to gene expression. In the ENCODE Project, we have identified the genomic binding locations across 11 different human cell types of CTCF, RNA Pol II (RNAPII), and MYC, three TFs with diverse roles. Our data and analysis revealed how these factors bind in relation to genomic features and shape gene expression and cell-type specificity. CTCF bound predominantly in intergenic regions while RNAPII and MYC preferentially bound to core promoter regions. CTCF sites were relatively invariant across diverse cell types, while MYC showed the greatest cell-type specificity. MYC and RNAPII co-localized at many of their binding sites and putative target genes. Cell-type specific binding sites, in particular for MYC and RNAPII, were associated with cell-type specific functions. Patterns of binding in relation to gene features were generally conserved across different cell types. RNAPII occupancy was higher over exons than adjacent introns, likely reflecting a link between transcriptional elongation and splicing. TF binding was positively correlated with the expression levels of their putative target genes, but combinatorial binding, in particular of MYC and RNAPII, was even more strongly associated with higher gene expression. These data illuminate how combinatorial binding of transcription factors in diverse cell types is associated with gene expression and cell-type specific biology.


Subject(s)
Gene Expression Regulation/physiology , Genome, Human/physiology , RNA Polymerase II/metabolism , Response Elements/physiology , Transcription Factors/metabolism , Transcription, Genetic/physiology , Genome-Wide Association Study/methods , HeLa Cells , Hep G2 Cells , Humans , K562 Cells , Organ Specificity/physiology , RNA Splicing/physiology
2.
Genome Res ; 21(10): 1757-67, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21750106

ABSTRACT

The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map "open chromatin." Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease.


Subject(s)
Chromatin/metabolism , Chromosome Mapping , Regulatory Elements, Transcriptional , Sequence Analysis, DNA/methods , Base Sequence , Binding Sites , CCCTC-Binding Factor , Cell Differentiation/genetics , Cell Line , Gene Expression Regulation , Humans , Protein Binding , Repressor Proteins/metabolism , Transcription, Genetic , Transcriptional Activation
3.
Genome Res ; 17(6): 877-85, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17179217

ABSTRACT

DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type-specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays.


Subject(s)
Fibroblasts/chemistry , Fixatives/chemistry , Formaldehyde/chemistry , Nucleosomes/chemistry , Oligonucleotide Array Sequence Analysis , Regulatory Elements, Transcriptional , Cells, Cultured , Deoxyribonuclease I/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Nucleosomes/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...