Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 13(1): 76, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35189973

ABSTRACT

BACKGROUND: Hemolysis occurs in many injury settings and can trigger disease processes. In the kidney, extracellular hemoglobin can induce damage via several mechanisms. These include oxidative stress, mitochondrial dysfunction, and inflammation, which promote fibrosis and chronic kidney disease. Understanding the pathophysiology of these injury pathways offers opportunities to develop new therapeutic strategies. METHODS: To model hemolysis-induced kidney injury, human kidney organoids were treated with hemin, an iron-containing porphyrin, that generates reactive oxygen species. In addition, we developed an induced pluripotent stem cell line expressing the biosensor, CytochromeC-GFP (CytoC-GFP), which provides a real-time readout of mitochondrial morphology, health, and early apoptotic events. RESULTS: We found that hemin-treated kidney organoids show oxidative damage, increased expression of injury markers, impaired functionality of organic anion and cation transport and undergo fibrosis. Injury could be detected in live CytoC-GFP organoids by cytoplasmic localization of fluorescence. Finally, we show that 4-(phenylthio)butanoic acid, an HDAC inhibitor with anti-fibrotic effects in vivo, reduces hemin-induced human kidney organoid fibrosis. CONCLUSION: This work establishes a hemin-induced model of kidney organoid injury. This platform provides a new tool to study the injury and repair response pathways in human kidney tissue and will assist in the development of new therapeutics.


Subject(s)
Pluripotent Stem Cells , Renal Insufficiency, Chronic , Humans , Kidney/metabolism , Organoids/metabolism , Oxidative Stress , Renal Insufficiency, Chronic/metabolism
2.
Dis Model Mech ; 12(4)2019 04 05.
Article in English | MEDLINE | ID: mdl-30890583

ABSTRACT

Acute kidney injury (AKI) is a serious disorder for which there are limited treatment options. Following injury, native nephrons display limited regenerative capabilities, relying on the dedifferentiation and proliferation of renal tubular epithelial cells (RTECs) that survive the insult. Previously, we identified 4-(phenylthio)butanoic acid (PTBA), a histone deacetylase inhibitor (HDI), as an enhancer of renal recovery, and showed that PTBA treatment increased RTEC proliferation and reduced renal fibrosis. Here, we investigated the regenerative mechanisms of PTBA in zebrafish models of larval renal injury and adult cardiac injury. With respect to renal injury, we showed that delivery of PTBA using an esterified prodrug (UPHD25) increases the reactivation of the renal progenitor gene Pax2a, enhances dedifferentiation of RTECs, reduces Kidney injury molecule-1 (Kim-1) expression, and lowers the number of infiltrating macrophages. Further, we found that the effects of PTBA on RTEC proliferation depend upon retinoic acid signaling and demonstrate that the therapeutic properties of PTBA are not restricted to the kidney but also increase cardiomyocyte proliferation and decrease fibrosis following cardiac injury in adult zebrafish. These studies provide key mechanistic insights into how PTBA enhances tissue repair in models of acute injury and lay the groundwork for translating this novel HDI into the clinic.This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Butyrates/pharmacology , Cell Dedifferentiation , Regeneration , Sulfides/pharmacology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/pathology , Immune System/drug effects , Immune System/metabolism , Kidney Tubules/pathology , Macrophages/drug effects , Macrophages/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , PAX2 Transcription Factor/metabolism , Prodrugs/pharmacology , Signal Transduction/drug effects , Tretinoin/pharmacology , Zebrafish/immunology , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...