Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clim Change ; 176(4): 41, 2023.
Article in English | MEDLINE | ID: mdl-37034009

ABSTRACT

The global food system, and animal agriculture in particular, is a major and growing contributor to climate change, land system change, biodiversity loss, water consumption and contamination, and environmental pollution. The copious production and consumption of animal products are also contributing to increasingly negative public health outcomes, particularly in wealthy and rapidly industrializing countries, and result in the slaughter of trillions of animals each year. These impacts are motivating calls for reduced reliance on animal-based products and increased use of replacement plant-based products. However, our understanding of how the production and consumption of animal products, as well as plant-based alternatives, interact with important dimensions of human and environment systems is incomplete across space and time. This inhibits comprehensively envisioning global and regional food system transitions and planning to manage the costs and synergies thereof. We therefore propose a cross-disciplinary research agenda on future target-based scenarios for food system transformation that has at its core three main activities: (1) data collection and analysis at the intersection of animal agriculture, the environment, and societal well-being, (2) the construction of target-based scenarios for animal products informed by these new data and empirical understandings, and (3) the evaluation of impacts, unintended consequences, co-benefits, and trade-offs of these target-based scenarios to help inform decision-making.

2.
Proc Natl Acad Sci U S A ; 119(43): e2119399119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252045

ABSTRACT

Recent record rainfall and flood events have prompted increased attention to flood impacts on human systems. Information regarding flood effects on food security is of particular importance for humanitarian organizations and is especially valuable across Africa's rural areas that contribute to regional food supplies. We quantitatively evaluate where and to what extent flooding impacts food security across Africa, using a Granger causality analysis and panel modeling approaches. Within our modeled areas, we find that ∼12% of the people that experienced food insecurity from 2009 to 2020 had their food security status affected by flooding. Furthermore, flooding and its associated meteorological conditions can simultaneously degrade food security locally while enhancing it at regional spatial scales, leading to large variations in overall food security outcomes. Dedicated data collection at the intersection of flood events and associated food security measures across different spatial and temporal scales are required to better characterize the extent of flood impact and inform preparedness, response, and recovery needs.


Subject(s)
Floods , Food Supply , Africa , Data Collection , Food Security , Humans
3.
J Geophys Res Atmos ; 126(5): e2020JD034108, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-34513547

ABSTRACT

Biophysical vegetation responses to elevated atmospheric carbon dioxide (CO2) affect regional hydroclimate through two competing mechanisms. Higher CO2 increases leaf area (LAI), thereby increasing transpiration and water losses. Simultaneously, elevated CO2 reduces stomatal conductance and transpiration, thereby increasing rootzone soil moisture. Which mechanism dominates in the future is highly uncertain, partly because these two processes are difficult to explicitly separate within dynamic vegetation models. We address this challenge by using the GISS ModelE global climate model to conduct a novel set of idealized 2×CO2 sensitivity experiments to: evaluate the total vegetation biophysical contribution to regional climate change under high CO2; and quantify the separate contributions of enhanced LAI and reduced stomatal conductance to regional hydroclimate responses. We find that increased LAI exacerbates soil moisture deficits across the sub-tropics and more water-limited regions, but also attenuates warming by ∼0.5-1°C in the US Southwest, Central Asia, Southeast Asia, and northern South America. Reduced stomatal conductance effects contribute ∼1°C of summertime warming. For some regions, enhanced LAI and reduced stomatal conductance produce nonlinear and either competing or mutually amplifying hydroclimate responses. In northeastern Australia, these effects combine to exacerbate radiation-forced warming and contribute to year-round water limitation. Conversely, at higher latitudes these combined effects result in less warming than would otherwise be predicted due to nonlinear responses. These results highlight substantial regional variation in CO2-driven vegetation responses and the importance of improving model representations of these processes to better quantify regional hydroclimate impacts.

4.
J Clim ; 32(2): 465-484, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-32699488

ABSTRACT

Modern agricultural land cover and management are important as regional climate forcings. Previous work has shown that land cover change can significantly impact key climate variables, including turbulent fluxes, precipitation, and surface temperature. However, fewer studies have investigated how intensive crop management can impact background climate conditions, such as the strength of land-atmosphere coupling and evaporative regime. We conduct sensitivity experiments using a state-of-the-art climate model with modified vegetation characteristics to represent modern crop cover and management, using observed crop-specific leaf area indexes and calendars. We quantify changes in land-atmosphere interactions and climate over intensively cultivated regions situated at transitions between moisture- and energy-limited conditions. Results show that modern intensive agriculture has significant and geographically varying impacts on regional evaporative regimes and background climate conditions. Over the northern Great Plains, modern crop intensity increases the model simulated precipitation and soil moisture, weakening hydrologic coupling by increasing surface water availability and reducing moisture limits on evapotranspiration. In the U.S. Midwest, higher growing season evapotranspiration, coupled with winter and spring rainfall declines, reduces regional soil moisture, while crop albedo changes also reduce net surface radiation. This results overall in reduced dependency of regional surface temperature on latent heat fluxes. In central Asia, a combination of reduced net surface energy and enhanced pre-growing season precipitation amplify the energy-limited evaporative regime. These results highlight the need for improved representations of agriculture in global climate models to better account for regional climate impacts and interactions with other anthropogenic forcings.

SELECTION OF CITATIONS
SEARCH DETAIL
...