Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(9): e24600, 2011.
Article in English | MEDLINE | ID: mdl-21935428

ABSTRACT

Metaphyseal chondrodysplasia, Schmid type (MCDS) is characterized by mild short stature and growth plate hypertrophic zone expansion, and caused by collagen X mutations. We recently demonstrated the central importance of ER stress in the pathology of MCDS by recapitulating the disease phenotype by expressing misfolding forms of collagen X (Schmid) or thyroglobulin (Cog) in the hypertrophic zone. Here we characterize the Schmid and Cog ER stress signaling networks by transcriptional profiling of microdissected mutant and wildtype hypertrophic zones. Both models displayed similar unfolded protein responses (UPRs), involving activation of canonical ER stress sensors and upregulation of their downstream targets, including molecular chaperones, foldases, and ER-associated degradation machinery. Also upregulated were the emerging UPR regulators Wfs1 and Syvn1, recently identified UPR components including Armet and Creld2, and genes not previously implicated in ER stress such as Steap1 and Fgf21. Despite upregulation of the Chop/Cebpb pathway, apoptosis was not increased in mutant hypertrophic zones. Ultrastructural analysis of mutant growth plates revealed ER stress and disrupted chondrocyte maturation throughout mutant hypertrophic zones. This disruption was defined by profiling the expression of wildtype growth plate zone gene signatures in the mutant hypertrophic zones. Hypertrophic zone gene upregulation and proliferative zone gene downregulation were both inhibited in Schmid hypertrophic zones, resulting in the persistence of a proliferative chondrocyte-like expression profile in ER-stressed Schmid chondrocytes. Our findings provide a transcriptional map of two chondrocyte UPR gene networks in vivo, and define the consequences of UPR activation for the adaptation, differentiation, and survival of chondrocytes experiencing ER stress during hypertrophy. Thus they provide important insights into ER stress signaling and its impact on cartilage pathophysiology.


Subject(s)
Cartilage/cytology , Gene Expression Profiling/methods , Growth Plate/cytology , Osteochondrodysplasias/pathology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Apoptosis/physiology , Blotting, Western , Cartilage/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Hypoxia/physiology , Chondrocytes/metabolism , Chondrocytes/pathology , Computational Biology , Endoplasmic Reticulum Stress/physiology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Growth Plate/metabolism , In Situ Hybridization , In Situ Nick-End Labeling , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microdissection , Microscopy, Electron, Transmission , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction
2.
PLoS Genet ; 5(10): e1000691, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19834559

ABSTRACT

Pathologies caused by mutations in extracellular matrix proteins are generally considered to result from the synthesis of extracellular matrices that are defective. Mutations in type X collagen cause metaphyseal chondrodysplasia type Schmid (MCDS), a disorder characterised by dwarfism and an expanded growth plate hypertrophic zone. We generated a knock-in mouse model of an MCDS-causing mutation (COL10A1 p.Asn617Lys) to investigate pathogenic mechanisms linking genotype and phenotype. Mice expressing the collagen X mutation had shortened limbs and an expanded hypertrophic zone. Chondrocytes in the hypertrophic zone exhibited endoplasmic reticulum (ER) stress and a robust unfolded protein response (UPR) due to intracellular retention of mutant protein. Hypertrophic chondrocyte differentiation and osteoclast recruitment were significantly reduced indicating that the hypertrophic zone was expanded due to a decreased rate of VEGF-mediated vascular invasion of the growth plate. To test directly the role of ER stress and UPR in generating the MCDS phenotype, we produced transgenic mouse lines that used the collagen X promoter to drive expression of an ER stress-inducing protein (the cog mutant of thyroglobulin) in hypertrophic chondrocytes. The hypertrophic chondrocytes in this mouse exhibited ER stress with a characteristic UPR response. In addition, the hypertrophic zone was expanded, gene expression patterns were disrupted, osteoclast recruitment to the vascular invasion front was reduced, and long bone growth decreased. Our data demonstrate that triggering ER stress per se in hypertrophic chondrocytes is sufficient to induce the essential features of the cartilage pathology associated with MCDS and confirm that ER stress is a central pathogenic factor in the disease mechanism. These findings support the contention that ER stress may play a direct role in the pathogenesis of many connective tissue disorders associated with the expression of mutant extracellular matrix proteins.


Subject(s)
Cartilage/metabolism , Cartilage/pathology , Chondrodysplasia Punctata/metabolism , Chondrodysplasia Punctata/pathology , Collagen Type X/metabolism , Endoplasmic Reticulum/metabolism , Stress, Physiological , Animals , Base Sequence , Cell Differentiation , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrodysplasia Punctata/genetics , Collagen Type X/genetics , Disease Models, Animal , Mice , Unfolded Protein Response , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...