Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Mol Cancer Ther ; 22(12): 1365-1375, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37788341

ABSTRACT

Gastric and pancreatic cancers are malignancies of high unmet clinical need. Expression of CLDN18.2 in these cancers, coupled with it's absence from most normal tissues, provides a potential therapeutic window against this target. We present preclinical development and characterization of a novel therapeutic mAb and antibody-drug conjugate (ADC) targeting CLDN18.2. A humanized CLDN18.2 specific mAb, CLDN18.2-307-mAb, was generated through immunization in mice followed by full humanization of the mouse mAb sequences. Antibody clones were screened by flow cytometry for selective binding to membrane bound CLDN18.2. A CLDN18.2-directed ADC (CLDN18.2-307-ADC) was also generated by conjugating MMAE to CLDN18.2 mAb using a cleavable linker. Tissue expression of CLDN18.2 was determined by IHC assay using a CLDN18.2-specific mAb. CLDN18.2-307-mAb binds with high affinity to CLDN18.2-positive (CLDN18.2+) cells and induces antibody-dependent cell-mediated cytotoxicity (ADCC). Treatment with this CLDN18.2-mAb blocked the growth of CLDN18.2+ gastric and pancreas cancer cell line xenograft (CDX) models. Upon binding to the extracellular domain of this target, the CLDN18.2-ADC/CLDN18.2 protein was internalized and subsequently localized to the lysosomal compartment inducing complete and sustained tumor regressions in CLDN18.2+ CDXs and patient-derived pancreatic cancer xenografts (PDX). A screen of human cancer tissues, by IHC, found 58% of gastric, 60% of gastroesophageal junction, and 20% of pancreatic adenocarcinomas to be positive for membrane expression of CLDN18.2. These data support clinical development of the CLDN18.2-307-mAb and CLDN18.2-307-ADC for treatment of CLDN18.2+ cancers. Both are now being investigated in phase I clinical studies.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Mice , Animals , Antibodies, Monoclonal , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Cell Line, Tumor , Xenograft Model Antitumor Assays , Disease Models, Animal , Neoplasms/drug therapy , Claudins , Pancreatic Neoplasms
3.
Br J Cancer ; 129(6): 1022-1031, 2023 10.
Article in English | MEDLINE | ID: mdl-37507543

ABSTRACT

BACKGROUND: The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS: Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS: PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Leukocytes, Mononuclear/metabolism , Neoadjuvant Therapy , Neoplasms/drug therapy , Phenotype , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology
4.
Clin Cancer Res ; 29(11): 2131-2143, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36884217

ABSTRACT

PURPOSE: Claudin-6 (CLDN6) is expressed at elevated levels in multiple human cancers including ovarian and endometrial malignancies, with little or no detectable expression in normal adult tissue. This expression profile makes CLDN6 an ideal target for development of a potential therapeutic antibody-drug conjugate (ADC). This study describes the generation and preclinical characterization of CLDN6-23-ADC, an ADC consisting of a humanized anti-CLDN6 monoclonal antibody coupled to monomethyl auristatin E (MMAE) via a cleavable linker. EXPERIMENTAL DESIGN: A fully humanized anti-CLDN6 antibody was conjugated to MMAE resulting in the potential therapeutic ADC, CLDN6-23-ADC. The antitumor efficacy of CLDN6-23-ADC was assessed for antitumor efficacy in CLDN6-positive (CLDN6+) and -negative (CLDN6-) xenografts and patient-derived xenograft (PDX) models of human cancers. RESULTS: CLDN6-23-ADC selectively binds to CLDN6, versus other CLDN family members, inhibits the proliferation of CLDN6+ cancer cells in vitro, and is rapidly internalized in CLDN6+ cells. Robust tumor regressions were observed in multiple CLDN6+ xenograft models and tumor inhibition led to markedly enhanced survival of CLDN6+ PDX tumors following treatment with CLDN6-23-ADC. IHC assessment of cancer tissue microarrays demonstrate elevated levels of CLDN6 in 29% of ovarian epithelial carcinomas. Approximately 45% of high-grade serous ovarian carcinomas and 11% of endometrial carcinomas are positive for the target. CONCLUSIONS: We report the development of a novel ADC, CLDN6-23-ADC, that selectively targets CLDN6, a potential onco-fetal-antigen which is highly expressed in ovarian and endometrial cancers. CLDN6-23-ADC exhibits robust tumor regressions in mouse models of human ovarian and endometrial cancers and is currently undergoing phase I study.


Subject(s)
Endometrial Neoplasms , Immunoconjugates , Mice , Animals , Humans , Female , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Disease Models, Animal , Endometrial Neoplasms/drug therapy , Cell Line, Tumor
5.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914167

ABSTRACT

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Lapatinib/pharmacology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/metabolism , Trastuzumab/metabolism , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 21(5): 751-761, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35417017

ABSTRACT

Pharmacologically targeting the HER2 oncoprotein with therapeutics such as the mAb, trastuzumab, provides clinical benefit for patients with HER2-positive (HER2+) cancers. However, a significant number of patients eventually progress on these therapies. Efforts to overcome therapeutic resistance through combination therapy with small-molecule inhibitors of HER2 have been limited by toxicities associated with off-target activity and/or limited efficacy. In this preclinical study, we explore single-agent and combined activity of tucatinib, a novel HER2-selective small-molecule inhibitor. Tucatinib demonstrated potent, selective activity in a panel of 456 human cancer cell lines, with activity restricted to cell lines (breast and non-breast) with HER2-amplification, including models of acquired resistance to trastuzumab. Within the HER2+ population, tucatinib response tracked strongly with HER2-driven signaling. Single-agent tucatinib induced tumor regressions in xenograft models of HER2+ breast cancer and combination with trastuzumab induced a complete and sustained blockade of HER2/PI3K/AKT signaling. Efficacy of the tucatinib/trastuzumab combination matched that induced by current standard-of-care trastuzumab/pertuzumab/docetaxel combination, with the exception that the chemotherapy-sparing tucatinib/trastuzumab combination did not require a dosing holiday to achieve the same efficacy. In xenograft models of HER2+ breast cancer that also express estrogen receptor (ER; HER2+/ER+), tucatinib showed combined efficacy with inhibitors of CDK4/6 and ER, indicating potential novel therapeutic strategies for difficult-to-treat subtypes of HER2+ breast cancer. These data support expanded clinical investigations of tucatinib as a combination partner for other novel and approved targeted therapies for HER2-driven malignancies.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Female , Humans , Oxazoles , Phosphatidylinositol 3-Kinases/therapeutic use , Pyridines , Quinazolines , Receptor, ErbB-2/metabolism , Receptors, Estrogen/therapeutic use , Trastuzumab
7.
Cells ; 10(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445730

ABSTRACT

Drug resistance is the main obstacle to achieving cures with both conventional and targeted anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic transcriptional changes, which occur at a much higher frequency than mutations and may involve population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcriptional Mediator complex, regulate transcriptional reprogramming by co-operating with different signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adaptation to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with a single dose of the drug initially led to growth inhibition that was followed by the resumption of proliferation and development of drug resistance in the adapted populations. However, this adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor resistance to therapy.


Subject(s)
Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cetuximab/pharmacology , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm/drug effects , Erlotinib Hydrochloride/pharmacology , Gefitinib/pharmacology , Humans , Inhibitory Concentration 50
8.
Breast Cancer Res ; 22(1): 89, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32795346

ABSTRACT

BACKGROUND: Combined targeting of CDK4/6 and ER is now the standard of care for patients with advanced ER+/HER2- breast cancer. However, acquired resistance to these therapies frequently leads to disease progression. As such, it is critical to identify the mechanisms by which resistance to CDK4/6-based therapies is acquired and also identify therapeutic strategies to overcome resistance. METHODS: In this study, we developed and characterized multiple in vitro and in vivo models of acquired resistance to CDK4/6-based therapies. Resistant models were screened by reverse phase protein array (RPPA) for cell signaling changes that are activated in resistance. RESULTS: We show that either a direct loss of Rb or loss of dependence on Rb signaling confers cross-resistance to inhibitors of CDK4/6, while PI3K/mTOR signaling remains activated. Treatment with the p110α-selective PI3K inhibitor, alpelisib (BYL719), completely blocked the progression of acquired CDK4/6 inhibitor-resistant xenografts in the absence of continued CDK4/6 inhibitor treatment in models of both PIK3CA mutant and wild-type ER+/HER2- breast cancer. Triple combination therapy against PI3K:CDK4/6:ER prevented and/or delayed the onset of resistance in treatment-naive ER+/HER2- breast cancer models. CONCLUSIONS: These data support the clinical investigation of p110α-selective inhibitors of PI3K, such as alpelisib, in patients with ER+/HER2- breast cancer who have progressed on CDK4/6:ER-based therapies. Our data also support the investigation of PI3K:CDK4/6:ER triple combination therapy to prevent the onset of resistance to the combination of endocrine therapy plus CDK4/6 inhibition.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , Estrogen Receptor alpha/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , Humans , Mice, Nude , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Protein Kinase Inhibitors/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
9.
Cells ; 9(3)2020 03 06.
Article in English | MEDLINE | ID: mdl-32155786

ABSTRACT

CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/enzymology , Cell Line, Tumor , Cyclin-Dependent Kinases/biosynthesis , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/administration & dosage , Erlotinib Hydrochloride/pharmacology , Female , Gene Expression/drug effects , Humans , MCF-7 Cells , Phenylenediamines/administration & dosage , Phenylenediamines/pharmacology , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Survival Analysis , Trans-Activators/biosynthesis , Trans-Activators/genetics , Cyclin-Dependent Kinase-Activating Kinase
10.
Cancers (Basel) ; 11(2)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30743996

ABSTRACT

Prolonged treatment of HER2 positive breast cancer cells with tyrosine kinase inhibitors (TKIs) leads to the emergence of acquired resistance. However, the effects of continuous TKI exposure on cell fate, and the steps leading to the acquisition of a resistant phenotype are poorly understood. To explore this, we exposed five HER2 positive cells lines to HER2 targeted therapies for periods of up to 4 weeks and examined senescence associated ß-galactosidase (SA-ß-gal) activity together with additional markers of senescence. We found that lapatinib treatment resulted in phenotypic alterations consistent with a senescent phenotype and strong SA-ß-gal activity in HER2-positive cell lines. Lapatinib-induced senescence was associated with elevated levels of p15 and p27 but was not dependent on the expression of p16 or p21. Restoring wild type p53 activity either by transfection or by treatment with APR-246, a molecule which reactivates mutant p53, blocked lapatinib-induced senescence and caused increased cell death. In contrast to lapatinib, SA-ß-gal activity was not induced by exposing the cells to trastuzumab as a single agent but co-administration of lapatinib and trastuzumab induced senescence, as did treatment of the cells with the irreversible HER2 TKIs neratinib and afatinib. Neratinib- and afatinib-induced senescence was not reversed by removing the drug whereas lapatinib-induced senescence was reversible. In summary, therapy-induced senescence represents a novel mechanism of action of HER2 targeting agents and may be a potential pathway for the emergence of resistance.

11.
Science ; 363(6424): 270-275, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30573544

ABSTRACT

The bis-tetrahydroisoquinoline (bis-THIQ) natural products have been studied intensively over the past four decades for their exceptionally potent anticancer activity, in addition to strong Gram-positive and Gram-negative antibiotic character. Synthetic strategies toward these complex polycyclic compounds have relied heavily on electrophilic aromatic chemistry, such as the Pictet-Spengler reaction, that mimics their biosynthetic pathways. Herein, we report an approach to two bis-THIQ natural products, jorunnamycin A and jorumycin, that instead harnesses the power of modern transition-metal catalysis for the three major bond-forming events and proceeds with high efficiency (15 and 16 steps, respectively). By breaking from biomimicry, this strategy allows for the preparation of a more diverse set of nonnatural analogs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Isoquinolines/chemical synthesis , Quinolones/chemical synthesis , Tetrahydroisoquinolines/chemical synthesis , Catalysis , Cell Line, Tumor , Drug Discovery , Humans , Hydrogenation , Molecular Structure
12.
BMC Cancer ; 18(1): 965, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30305055

ABSTRACT

BACKGROUND: Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells. METHODS: We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer. RESULTS: In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells. CONCLUSIONS: Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Lapatinib/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Forkhead Box Protein O3/biosynthesis , Gene Expression/drug effects , Genes, erbB-2 , Humans , Lapatinib/therapeutic use , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , TNF-Related Apoptosis-Inducing Ligand/therapeutic use
13.
Proc Natl Acad Sci U S A ; 114(38): 10208-10213, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28855340

ABSTRACT

The nuclear factor-κB (NFκB) family of transcription factors has been implicated in inflammatory disorders, viral infections, and cancer. Most of the drugs that inhibit NFκB show significant side effects, possibly due to sustained NFκB suppression. Drugs affecting induced, but not basal, NFκB activity may have the potential to provide therapeutic benefit without associated toxicity. NFκB activation by stress-inducible cell cycle inhibitor p21 was shown to be mediated by a p21-stimulated transcription-regulating kinase CDK8. CDK8 and its paralog CDK19, associated with the transcriptional Mediator complex, act as coregulators of several transcription factors implicated in cancer; CDK8/19 inhibitors are entering clinical development. Here we show that CDK8/19 inhibition by different small-molecule kinase inhibitors or shRNAs suppresses the elongation of NFκB-induced transcription when such transcription is activated by p21-independent canonical inducers, such as TNFα. On NFκB activation, CDK8/19 are corecruited with NFκB to the promoters of the responsive genes. Inhibition of CDK8/19 kinase activity suppresses the RNA polymerase II C-terminal domain phosphorylation required for transcriptional elongation, in a gene-specific manner. Genes coregulated by CDK8/19 and NFκB include IL8, CXCL1, and CXCL2, which encode tumor-promoting proinflammatory cytokines. Although it suppressed newly induced NFκB-driven transcription, CDK8/19 inhibition in most cases had no effect on the basal expression of NFκB-regulated genes or promoters; the same selective regulation of newly induced transcription was observed with other transcription signals potentiated by CDK8/19. This selective role of CDK8/19 identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development and differentiation as well as pathological processes.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , NF-kappa B/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Cytokines/metabolism , Gene Expression Regulation , HEK293 Cells , Humans
14.
Int J Oncol ; 50(6): 2221-2228, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28498399

ABSTRACT

Although HER2 targeted therapies have improved prognosis for HER2 positive breast cancer, HER2 positive cancers which co-express ER have poorer response rates to standard HER2 targeted therapies, combined with chemotherapy, than HER2 positive/ER negative breast cancer. Administration of hormone therapy concurrently with chemotherapy and HER2 targeted therapy is generally not recommended. Using publically available gene expression datasets we found that high expression of IGF1R is associated with shorter disease-free survival in patients whose tumors are ER positive and HER2 positive. IGF1R is frequently expressed in HER2 positive breast cancer and there is significant evidence for crosstalk between IGF1R and both HER2 and ER. Therefore, we evaluated the therapeutic potential of targeting ER and IGF1R in cell line models of HER2/ER/IGF1R positive breast cancer, using tamoxifen and two IGF1R targeted tyrosine kinase inhibitors (NVP-AEW541 and BMS-536924). Dual inhibition of ER and IGF1R enhanced growth inhibition in the four HER2 positive cell lines tested and caused an increase in cell cycle arrest in G1 in BT474 cells. In addition, combined treatment with trastuzumab, tamoxifen and either of the IGF1R TKIs enhanced response compared to dual targeting strategies in three of the four HER2 positive breast cancer cell lines tested. Furthermore, in a cell line model of trastuzumab-resistant HER2 positive breast cancer (BT474/Tr), tamoxifen combined with an IGF1R TKI produced a similar enhanced response as observed in the parental BT474 cells suggesting that this combination may overcome acquired trastuzumab resistance in this model. Combining ER and IGF1R targeting with HER2 targeted therapies may be an alternative to HER2 targeted therapy and chemotherapy for patients with HER2/ER/IGF1R positive breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Estrogen Receptor alpha/genetics , Receptor, ErbB-2/genetics , Receptors, Somatomedin/genetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease-Free Survival , Estrogen Receptor alpha/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Receptor, IGF Type 1 , Receptors, Somatomedin/antagonists & inhibitors , Tamoxifen/administration & dosage , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
15.
Oncotarget ; 8(8): 12558-12575, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28147342

ABSTRACT

Hormone therapy targeting estrogen receptor (ER) is the principal treatment for ER-positive breast cancers. However, many cancers develop resistance to hormone therapy while retaining ER expression. Identifying new druggable mediators of ER function can help to increase the efficacy of ER-targeting drugs. Cyclin-dependent kinase 8 (CDK8) is a Mediator complex-associated transcriptional regulator with oncogenic activities. Expression of CDK8, its paralog CDK19 and their binding partner Cyclin C are negative prognostic markers in breast cancer. Meta-analysis of transcriptome databases revealed an inverse correlation between CDK8 and ERα expression, suggesting that CDK8 could be functionally associated with ER. We have found that CDK8 inhibition by CDK8/19-selective small-molecule kinase inhibitors, by shRNA knockdown or by CRISPR/CAS9 knockout suppresses estrogen-induced transcription in ER-positive breast cancer cells; this effect was exerted downstream of ER. Estrogen addition stimulated the binding of CDK8 to the ER-responsive GREB1 gene promoter and CDK8/19 inhibition reduced estrogen-stimulated association of an elongation-competent phosphorylated form of RNA Polymerase II with GREB1. CDK8/19 inhibitors abrogated the mitogenic effect of estrogen on ER-positive cells and potentiated the growth-inhibitory effects of ER antagonist fulvestrant. Treatment of estrogen-deprived ER-positive breast cancer cells with CDK8/19 inhibitors strongly impeded the development of estrogen independence. In vivo treatment with a CDK8/19 inhibitor Senexin B suppressed tumor growth and augmented the effects of fulvestrant in ER-positive breast cancer xenografts. These results identify CDK8 as a novel downstream mediator of ER and suggest the utility of CDK8 inhibitors for ER-positive breast cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Estrogens/biosynthesis , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Drug Resistance, Neoplasm/drug effects , Estradiol/analogs & derivatives , Estradiol/pharmacology , Female , Fulvestrant , Humans , Mice , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Protein Kinase Inhibitors/pharmacology , Transcription, Genetic , Transcriptome , Xenograft Model Antitumor Assays
16.
Curr Cancer Drug Targets ; 15(8): 739-49, 2015.
Article in English | MEDLINE | ID: mdl-26452386

ABSTRACT

CDK8 and its paralog CDK19, in complex with CCNC, MED12 and MED13, are transcriptional regulators that mediate several carcinogenic pathways and the chemotherapy-induced tumor-supporting paracrine network. Following up on our previous observation that CDK8, CDK19 and CCNC RNA expression is associated with shorter relapse-free survival (RFS) in breast cancer, we now found by immunohistochemical analysis that CDK8/19 protein is overexpressed in invasive ductal carcinomas relative to non-malignant mammary tissues. Meta-analysis of transcriptomic data revealed that higher CDK8 expression is associated with shorter RFS in all molecular subtypes of breast cancer. These correlations were much stronger in patients who underwent systemic adjuvant therapy, suggesting that CDK8 impacts the failure of systemic therapy. The same associations were found for CDK19, CCNC and MED13. In contrast, MED12 showed the opposite association with a longer RFS. The expression levels of CDK8 in breast cancer samples were directly correlated with the expression of MYC, as well as CDK19, CCNC and MED13 but inversely correlated with MED12. CDK8, CDK19 and CCNC expression was strongly increased and MED12 expression was decreased in tumors with mutant p53. Gene amplification is the most frequent type of genetic alterations of CDK8, CDK19, CCNC and MED13 in breast cancers (9.7% of which have amplified MED13), whereas point mutations are more common in MED12. These results suggest that the expression of CDK8 and its interactive genes has a profound impact on the response to adjuvant therapy in breast cancer in accordance with the role of CDK8 in chemotherapy-induced tumor-supporting paracrine activities.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 8/genetics , Breast Neoplasms/diagnosis , Cyclin C/genetics , Cyclin-Dependent Kinases/genetics , Female , Humans , Transcription Factors
17.
Breast Cancer Res Treat ; 136(3): 717-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23117852

ABSTRACT

Insulin-like growth factor-1 receptor (IGF1R) signalling is implicated in resistance to trastuzumab. However, the benefit of co-targeting HER2 and IGF1R has not been extensively studied, and the relationship between activated IGF1R and clinical response to trastuzumab has not been reported. This study aimed to evaluate the combination of trastuzumab with IGF1R tyrosine kinase inhibitors (TKIs) in a panel of HER2-positive breast cancer cell lines, and to examine the relationship between IGF1R expression and activation and response to trastuzumab in HER2-positive breast cancer patients. The anti-proliferative effects of trastuzumab combined with IGF1R TKIs BMS-536924 or NVP-AEW541 were measured in nine HER2-positive cell lines. IGF1R and phosphorylated IGF1R/insulin receptor (pIGF1R/IR) were measured by immunohistochemistry in 160 tumour samples from trastuzumab-treated patients (ICORG 06-22). The HER2-positive cell lines displayed varying sensitivity to IGF1R TKIs alone (IC(50)s: 0.7 to >10 µM). However, when combined with trastuzumab, a significantly enhanced effect was observed in five cell lines treated with BMS-536924, and three with NVP-AEW541. While IGF1R levels correlated with reduced response to NVP-AEW541 alone, neither IGF1R nor pIGF1R were predictive of response to BMS-536924 or NVP-AEW541 in combination with trastuzumab. Low HER2 levels correlated with response to BMS-536924 in combination with trastuzumab. Akt levels correlated with improved response to trastuzumab and NVP-AEW541 (P = 0.039). Cytoplasmic IGF1R staining was observed in all tumours, membrane IGF1R was detected in 13.8 %, and pIGF1R/IR was detected in 48.8 %. Although membrane IGF1R staining was associated with larger tumour size (P = 0.041), and lower tumour grade (P = 0.024), no association between IGF1R or pIGF1R/IR and patient survival was observed. In conclusion, while neither IGF1R expression nor activation was predictive of response to trastuzumab, these pre-clinical data provide evidence that co-targeting HER2 and IGF1R may be beneficial in some HER2-amplified breast cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Molecular Targeted Therapy , Receptor, ErbB-2/metabolism , Receptor, IGF Type 1/metabolism , Age Factors , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cytoplasm/metabolism , Female , Humans , Middle Aged , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyridones/administration & dosage , Pyridones/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrroles/administration & dosage , Pyrroles/pharmacology , Receptor, IGF Type 1/analysis , Receptor, IGF Type 1/antagonists & inhibitors , Trastuzumab , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...