Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 12(6)2022 05 30.
Article in English | MEDLINE | ID: mdl-35512190

ABSTRACT

Dynamic changes in chemoreceptor gene expression levels in sensory neurons are one strategy that an animal can use to modify their responses to dietary changes. However, the mechanisms underlying diet-dependent modulation of chemosensory gene expression are unclear. Here, we show that the expression of the srh-234 chemoreceptor gene localized in a single ADL sensory neuron type of Caenorhabditis elegans is downregulated when animals are fed a Comamonas aquatica bacterial diet, but not on an Escherichia coli diet. Remarkably, this diet-modulated effect on srh-234 expression is dependent on the micronutrient vitamin B12 endogenously produced by Comamonas aq. bacteria. Excess propionate and genetic perturbations in the canonical and shunt propionate breakdown pathways are able to override the repressive effects of vitamin B12 on srh-234 expression. The vitamin B12-mediated regulation of srh-234 expression levels in ADL requires the MEF-2 MADS domain transcription factor, providing a potential mechanism by which dietary vitamin B12 may transcriptionally tune individual chemoreceptor genes in a single sensory neuron type, which in turn may change animal responses to biologically relevant chemicals in their diet.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Diet , Gene Expression , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Propionates/metabolism , Vitamin B 12/metabolism , Vitamin B 12/pharmacology
3.
PLoS Genet ; 12(8): e1006237, 2016 08.
Article in English | MEDLINE | ID: mdl-27487365

ABSTRACT

Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Chemoreceptor Cells/metabolism , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/biosynthesis , Gene Expression Regulation, Developmental , Receptors, Neuropeptide/biosynthesis , Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis , Sensory Receptor Cells/metabolism , Signal Transduction/genetics , Transcription Factors/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...