Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(5): eade9068, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36724281

ABSTRACT

Bone fragments embedded in a rib of a mastodon (Mammut americanum) from the Manis site, Washington, were digitally excavated and refit to reconstruct an object that is thin and broad, has smooth, shaped faces that converge to sharp lateral edges, and has a plano-convex cross section. These characteristics are consistent with the object being a human-made projectile point. The 13,900-year-old Manis projectile point is morphologically different from later cylindrical osseous points of the 13,000-year-old Clovis complex. The Manis point, which is made of mastodon bone, shows that people predating Clovis made and used osseous weapons to hunt megafauna in the Pacific Northwest during the Bølling-Allerød.


Subject(s)
Mastodons , Animals , Humans , Infant, Newborn , Washington , Pangolins , Hunting , Archaeology
2.
Sci Rep ; 11(1): 18312, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526605

ABSTRACT

Modern feces samples of the endangered red panda (Ailurus fulgens) were examined using multiproxy analysis to characterize the dietary patterns in their natural habitat in India. An abundance of Bambusoideae phytoliths and leaves (macrobotanical remains) provide direct evidence of their primary dietary plants. In contrast, Bambusoideae pollen is sporadic or absent in the pollen assemblages. An abundance of Lepisorus spores and its leaves along with broadleaved taxa, Betula, Engelhardtia, and Quercus are indicative of other important food sources. Average δ13C values (- 29.6‰) of the red panda feces indicate typical C3 type of plants as the primary food source, while the, δ15N values vary in narrow range (3.3-5.1‰) but conspicuously reveal a seasonal difference in values most likely due to differing metabolic activities in summer and winter. The multiproxy data can provide a baseline for the reconstruction of the palaeodietary and palaeoecology of extinct herbivores at both regional and global scales.


Subject(s)
Ailuridae , Animal Feed , Feces , Herbivory , Animals , Biological Evolution , Geography , India , Seasons
3.
Curr Biol ; 29(12): 2031-2042.e6, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31178321

ABSTRACT

Living sloths represent two distinct lineages of small-sized mammals that independently evolved arboreality from terrestrial ancestors. The six extant species are the survivors of an evolutionary radiation marked by the extinction of large terrestrial forms at the end of the Quaternary. Until now, sloth evolutionary history has mainly been reconstructed from phylogenetic analyses of morphological characters. Here, we used ancient DNA methods to successfully sequence 10 extinct sloth mitogenomes encompassing all major lineages. This includes the iconic continental ground sloths Megatherium, Megalonyx, Mylodon, and Nothrotheriops and the smaller endemic Caribbean sloths Parocnus and Acratocnus. Phylogenetic analyses identify eight distinct lineages grouped in three well-supported clades, whose interrelationships are markedly incongruent with the currently accepted morphological topology. We show that recently extinct Caribbean sloths have a single origin but comprise two highly divergent lineages that are not directly related to living two-fingered sloths, which instead group with Mylodon. Moreover, living three-fingered sloths do not represent the sister group to all other sloths but are nested within a clade of extinct ground sloths including Megatherium, Megalonyx, and Nothrotheriops. Molecular dating also reveals that the eight newly recognized sloth families all originated between 36 and 28 million years ago (mya). The early divergence of recently extinct Caribbean sloths around 35 mya is consistent with the debated GAARlandia hypothesis postulating the existence at that time of a biogeographic connection between northern South America and the Greater Antilles. This new molecular phylogeny has major implications for reinterpreting sloth morphological evolution, biogeography, and diversification history.


Subject(s)
Biological Evolution , DNA, Ancient/analysis , Genome, Mitochondrial , Phylogeny , Sloths/classification , Animal Distribution , Animals , Sloths/genetics , Sloths/physiology
4.
PLoS One ; 14(3): e0202723, 2019.
Article in English | MEDLINE | ID: mdl-30840629

ABSTRACT

The study reports the micro- and macrobotanical remains on wild Yak dung, providing evidence for understanding the diet, habitat, and ecology of extant and extinct megaherbivores. Grasses are the primary diet of the yak as indicated by the abundance of grass pollen and phytoliths. Other associated non-arboreal and arboreal taxa namely, Cyperacaeae, Rosaceae, Chenopodiaceae, Artemisia, Prunus, and Rhododendron are also important dietary plants for their living. The observation of plant macrobotanical remains especially the vegetative part and seeds of the grasses and Cyperaceae is also in agreement with the palynodata. The documented micro- and macrobotanical data are indicative of both Alpine meadow and steppe vegetation under cold and dry climate which exactly reflected the current vegetation composition and climate in the region. The recovery of Botryococcus, Arcella, and diatom was observed in trace amounts in the palynoassemblage which would have been incorporated in the dung through the ingestion of water and are indicative of the presence of perennial water system in the region. Energy dispersive spectroscopy analysis marked that the element contained in dung samples has variation in relation to the summer and winter, which might be due to the availability of the food plants and vegetation. This generated multiproxy data serves as a strong supplementary data for modern pollen and vegetation relationships based on surface soil samples in the region. The recorded multiproxy data could also be useful to interpret the relationship between the coprolites of herbivorous fauna and the palaeodietary, the palaeoecology in the region, and to correlate with other mega herbivores in a global context.


Subject(s)
Cyperaceae/physiology , Ecosystem , Endangered Species , Feces/chemistry , Herbivory , Manure/analysis , Seasons , Animals , Cattle
5.
Sci Adv ; 5(2): eaau1200, 2019 02.
Article in English | MEDLINE | ID: mdl-30820449

ABSTRACT

Stable isotope analysis of the first fossilized Eremotherium laurillardi remains from Belize offers valuable insights into the conditions within which this individual lived and its ability to adapt to the increasing aridity of the Last Glacial Maximum (LGM). Cathodoluminescence (CL) microscopy was used to identify chemical alteration of the tooth during fossilization. Results demonstrate that the inner orthodentin resists diagenesis, yielding potentially unaltered values. Using an intensive "vacuum milling" technique, the inner orthodentin produced an accelerator mass spectrometry (AMS) date of 26,975 ± 120 calibrated years before the present. The stable carbon and oxygen isotope analysis of this layer shows that the tooth recorded two wet seasons separated by one longer dry season and that this sloth was able to adapt its diet to the marked seasonality of the LGM. This study offers new insights into obtaining reliable isotope data from fossilized remains and suggests that this individual adapted to climate shifts, contributing to the conversation surrounding megafauna extinction.


Subject(s)
Fossils , Sloths , Animals , Belize , Carbon Isotopes , Geography , Oxygen Isotopes
6.
Syst Biol ; 68(2): 204-218, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30239971

ABSTRACT

Sloths, like other xenarthrans, are an extremely interesting group of mammals that, after a long history of evolution and diversification in South America, became established on islands in the Caribbean and later reached North America during the Great American Biotic Interchange. In all three regions, they were part of the impressive Pleistocene megafauna. Most taxa became extinct and only two small, distantly related tree-dwelling genera survived. Here, we incorporate several recently described genera of sloths into an assembled morphological data supermatrix and apply Bayesian inference, using phylogenetic and morphological clock methods, to 64 sloth genera. Thus, we investigate the evolution of the group in terms of the timing of divergence of different lineages and their diversity, morphological disparity and biogeographical history. The phylogeny obtained supports the existence of the commonly recognized clades for the group. Our results provide divergence time estimates for the major clades within Folivora that could not be dated with molecular methods. Lineage diversity shows an early increase, reaching a peak in the Early Miocene followed by a major drop at the end of the Santacrucian (Early Miocene). A second peak in the Late Miocene was also followed by a major drop at the end of the Huayquerian (Late Miocene). Both events show differential impact at the family level. After that, a slight Plio-Pleistocene decline was observed before the marked drop with the extinction at the end of the Pleistocene. Phenotypic evolutionary rates were high during the early history of the clade, mainly associated with Mylodontidae, but rapidly decreased to lower values around 25 Ma, whereas Megalonychidae had lower rates at the beginning followed by a steady increase, peaking during the Late Miocene and the Pliocene. Morphological disparity showed a similar trend, with an early increase, followed by a slowly increasing phase through the Late Oligocene and Early Miocene, and ending with another increase beginning at the middle of the Miocene. Biogeographic analysis showed southern South America as the most probable area of origin of the clade and the main region in which the early diversification events took place. Both Megatheriinae and Nothrotheriinae basal nodes were strongly correlated with Andean uplift events, whereas the early history of Mylodontidae is closely associated with southern South America and also shows an early occupation of the northern regions. Within Megalonychidae, our results show Choloepus as a descendant of an island dispersing ancestor and a probable re-ingression to South America by a clade that originated in Central or North America.


Subject(s)
Phylogeny , Sloths/anatomy & histology , Sloths/classification , Animals , Biological Evolution , Central America , Phylogeography , South America
7.
Sci Adv ; 4(4): eaar7621, 2018 04.
Article in English | MEDLINE | ID: mdl-29707640

ABSTRACT

Predator-prey interactions revealed by vertebrate trace fossils are extremely rare. We present footprint evidence from White Sands National Monument in New Mexico for the association of sloth and human trackways. Geologically, the sloth and human trackways were made contemporaneously, and the sloth trackways show evidence of evasion and defensive behavior when associated with human tracks. Behavioral inferences from these trackways indicate prey selection and suggest that humans were harassing, stalking, and/or hunting the now-extinct giant ground sloth in the terminal Pleistocene.


Subject(s)
Archaeology , Paleontology , Sloths , Animals , Fossils , Geology , Humans , North America
8.
Science ; 349(6248): 602-6, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250679

ABSTRACT

The mechanisms of Late Pleistocene megafauna extinctions remain fiercely contested, with human impact or climate change cited as principal drivers. We compared ancient DNA and radiocarbon data from 31 detailed time series of regional megafaunal extinctions and replacements over the past 56,000 years with standard and new combined records of Northern Hemisphere climate in the Late Pleistocene. Unexpectedly, rapid climate changes associated with interstadial warming events are strongly associated with the regional replacement or extinction of major genetic clades or species of megafauna. The presence of many cryptic biotic transitions before the Pleistocene/Holocene boundary revealed by ancient DNA confirms the importance of climate change in megafaunal population extinctions and suggests that metapopulation structures necessary to survive such repeated and rapid climatic shifts were susceptible to human impacts.


Subject(s)
Extinction, Biological , Global Warming/history , Animals , DNA/genetics , DNA/history , DNA/isolation & purification , Fossils/history , History, Ancient , Humans , Paleontology , Population
9.
Sci Rep ; 5: 11826, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26134828

ABSTRACT

The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.


Subject(s)
DNA Methylation/genetics , DNA/genetics , Mammoths/genetics , Ursidae/genetics , Animals , DNA/isolation & purification , Fossils
10.
R Soc Open Sci ; 2(2): 140256, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26064594

ABSTRACT

A new genus and species of sloth (Eionaletherium tanycnemius gen. et sp. nov.) recently collected from the Late Miocene Urumaco Formation, Venezuela (northern South America) is herein described based on a partial skeleton including associated femora and tibiae. In order to make a preliminary analysis of the phylogenetic affinities of this new sloth we performed a discriminate analysis based on several characters of the femur and tibia of selected Mylodontoidea and Megatherioidea sloths. The consensus tree produced indicates that the new sloth, E. tanycnemius, is a member of the Mylodontoidea. Surprisingly, the new taxon shows some enigmatic features among Neogene mylodontoid sloths, e.g. femur with a robust lesser trochanter that projects medially and the straight distinctly elongated tibia. The discovery of E. tanycnemius increases the diversity of sloths present in the Urumaco sequence to ten taxa. This taxon supports previous studies of the sloth assemblage from the Urumaco sequence as it further indicates that there are several sloth lineages present that are unknown from the better sampled areas of southern South America.

11.
R Soc Open Sci ; 2(4): 150138, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26065399

ABSTRACT

[This corrects the article DOI: 10.1098/rsos.140256.].

12.
Proc Natl Acad Sci U S A ; 111(52): 18460-5, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25453065

ABSTRACT

Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets.


Subject(s)
Climate Change , Forests , Fossils , Mastodons/physiology , Alaska , Animals , Arctic Regions , Humans
13.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22048313

ABSTRACT

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Subject(s)
Biota , Climate Change/history , Extinction, Biological , Human Activities/history , Mammals/physiology , Animals , Bayes Theorem , Bison , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Europe , Fossils , Genetic Variation , Geography , History, Ancient , Horses , Humans , Mammals/genetics , Mammoths , Molecular Sequence Data , Population Dynamics , Reindeer , Siberia , Species Specificity , Time Factors
14.
Science ; 334(6054): 351-3, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22021854

ABSTRACT

The tip of a projectile point made of mastodon bone is embedded in a rib of a single disarticulated mastodon at the Manis site in the state of Washington. Radiocarbon dating and DNA analysis show that the rib is associated with the other remains and dates to 13,800 years ago. Thus, osseous projectile points, common to the Beringian Upper Paleolithic and Clovis, were made and used during pre-Clovis times in North America. The Manis site, combined with evidence of mammoth hunting at sites in Wisconsin, provides evidence that people were hunting proboscideans at least two millennia before Clovis.


Subject(s)
Archaeology , Mastodons , Weapons/history , Animals , Bone and Bones , Geologic Sediments , History, Ancient , Humans , Male , Radiometric Dating , Time , Washington
15.
Proc Natl Acad Sci U S A ; 102(33): 11763-8, 2005 Aug 16.
Article in English | MEDLINE | ID: mdl-16085711

ABSTRACT

Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their "last appearance" datum at approximately 11,000 radiocarbon years before present (yr BP) or slightly less in North America, approximately 10,500 yr BP in South America, and approximately 4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial-interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people.


Subject(s)
Biodiversity , Geography , Sloths/physiology , Animals , Bone and Bones/chemistry , Carbon Radioisotopes , Climate , Feces/chemistry , Humans , North America , Oxygen Isotopes , Population Dynamics , South America , Time Factors , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL
...