Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
EBioMedicine ; 47: 446-456, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31542391

ABSTRACT

BACKGROUND: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. METHODS: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ±â€¯3·1 years old; 2 female; BMI:33·9 ±â€¯2·3 kg/m2; eGFR:27·0 ±â€¯2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. FINDINGS: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated ß-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and -12. INTERPRETATION: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. FUND: NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.


Subject(s)
Cellular Senescence/drug effects , Dasatinib/pharmacology , Diabetic Nephropathies/metabolism , Quercetin/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Aged , Biomarkers , Biopsy , Clinical Trials, Phase I as Topic , Dasatinib/therapeutic use , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/drug therapy , Drug Therapy, Combination , Female , Humans , Immunohistochemistry , Kidney Function Tests , Macrophages/drug effects , Macrophages/metabolism , Male , Middle Aged , Quercetin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...