Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 5031, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097018

ABSTRACT

Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.


Subject(s)
Syzygium , Trees , Genetic Speciation , Genomics , Phylogeny , Syzygium/genetics
2.
PLoS One ; 11(4): e0153565, 2016.
Article in English | MEDLINE | ID: mdl-27119149

ABSTRACT

Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than expected phylogenetic diversity.


Subject(s)
Biodiversity , Plants/classification , Plants/genetics , Australia , Geologic Sediments/chemistry , Peru , Phylogeny , Rainforest , Refugium , Tropical Climate
3.
PLoS One ; 10(3): e0122164, 2015.
Article in English | MEDLINE | ID: mdl-25803607

ABSTRACT

Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , DNA Barcoding, Taxonomic/methods , Phylogeny , Rainforest , Base Sequence , Cluster Analysis , Geography , Models, Genetic , Molecular Sequence Data , Phylogeography/methods , Polymerase Chain Reaction , Queensland , Sequence Alignment , Sequence Analysis, DNA
4.
Mol Cell Endocrinol ; 382(1): 254-261, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24145130

ABSTRACT

Mammalian α4 phosphoprotein binds to the protein phosphatase 2A catalytic subunit (PP2Ac) to regulate PP2A activity, and to poly(A)-binding protein (PABP) and progestin-inducible EDD E3 ubiquitin ligase. This study showed induction of the EDD protein by progesterone, 17ß-estradiol and prolactin in breast cancer cells. Co-immunoprecipitation analyses, using lysates of COS-1 cells transfected with α4-deletion constructs, showed the α4 N-terminus binding to endogenous PP2Ac and PABP, and the C-terminus to EDD. Monoubiquitinated α4 in MCF-7 cells was unaffected by EDD-targeting siRNA (siEDD) nor by non-targetting siNT, thus, EDD does not ubiquitinate α4. PP2Ac is polyubiquitinated, and 36-kDa PP2Ac only was detected in siEDD- or siNT-transfected cells. However, treatment with proteasomal inhibitor MG132 showed polyubiquitinated-PP2Ac molecules (∼65-250kDa) abundantly in siNT controls but low in siEDD-transfectants, implicating PP2Ac as an EDD substrate. Finally, progesterone induction of EDD in MCF-7 cells correlated with decreased PP2Ac levels, further implicating hormone-inducible EDD in PP2Ac turnover.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Progestins/pharmacology , Protein Phosphatase 2/metabolism , Proteolysis/drug effects , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitination/drug effects , Adaptor Proteins, Signal Transducing , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , COS Cells , Chlorocebus aethiops , Enzyme Induction/drug effects , Female , Humans , Intracellular Signaling Peptides and Proteins/chemistry , MCF-7 Cells , Molecular Chaperones , Mutant Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , Polyubiquitin/metabolism , Protein Binding/drug effects , Substrate Specificity/drug effects
5.
J Cell Biochem ; 112(4): 1084-92, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21308737

ABSTRACT

Growth of the human MCF-7 breast cancer cell line is highly dependent on L-arginine. We have reported that L-arginine, released from extracellular substrates by prolactin (PRL)- and 17ß-estradiol (E2)-induced carboxypeptidase-D in the cell membrane, promotes nitric oxide (NO) production for MCF-7 cell survival. Arginine uptake is mediated by members of the cationic amino acid transporter (CAT) family and may coincide with induction of nitric oxide synthase (NOS) for the production of NO. The present study investigated the CAT isoforms and PRL/E2 regulation of CAT and NOS in breast cancer cell lines. Using RT-PCR analysis, CAT-1, CAT-2A, and CAT-2B transcripts were detected in MCF-7, T47D, and MDA-MB-231 cells. The CAT-4 transcript was detected in MDA-MB-231 only. CAT-3 was not detected in any of these cells. PRL and E2 did not significantly alter levels of CAT-1 mRNA and protein, nor CAT-2A and CAT-2B mRNAs in MCF-7 and T47D cells. PRL and E2 also had no effect on the overall uptake of L-[2,3,4,5-H(3)] arginine into these cells. However, confocal immunofluorescent microscopy showed that PRL and E2 upregulated eNOS and iNOS proteins, which distributed in the cytoplasm and/or nucleus of MCF-7 cells. Knockdown of CAT-1 gene expression using small interfering RNA significantly decreased L-[2,3,4,5-H(3)]-arginine uptake, decreased viability and increased apoptosis of MCF-7 and T47D cells. In summary, several CAT isoforms are expressed in breast cancer cells. The CAT-1 isoform plays a role in arginine uptake and, together with PRL/E2-induced NOS, contribute to NO production for the survival of MCF-7 and T47D cells.


Subject(s)
Arginine/pharmacokinetics , Cationic Amino Acid Transporter 1/metabolism , Nitric Oxide Synthase/metabolism , Apoptosis , Arginine/metabolism , Biological Transport/drug effects , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cationic Amino Acid Transporter 1/genetics , Cationic Amino Acid Transporter 2/genetics , Cationic Amino Acid Transporter 2/metabolism , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/enzymology , Cell Survival , Cytoplasm/drug effects , Cytoplasm/enzymology , Estradiol/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Microscopy, Confocal/methods , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Prolactin/pharmacology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
6.
J Org Chem ; 75(22): 7717-25, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21033682

ABSTRACT

A facile and mild reduction procedure is reported for the preparation of chiral allylic and propargyl alcohols in high enantiomeric purity. Under optimized conditions, alkynyl and alkenyl ketones were reduced by TarB-NO2 and NaBH4 at 25 °C in 1 h to produce chiral propargyl and allylic alcohols with enantiomeric excesses and yields up to 99%. In the case of α,ß-unsaturated alkenyl ketones, α-substituted cycloalkenones were reduced with up to 99% ee, while more substituted and acyclic derivatives exhibited lower induction. For α,ß-ynones, it was found that highly branched aliphatic ynones were reduced with optimal induction up to 90% ee, while reduction of aromatic and linear aliphatic derivatives resulted in more modest enantioselectivity. Using the (L)-TarB-NO2 reagent derived from (L)-tartaric acid, we routinely obtained highly enantioenriched chiral allylic and propargyl alcohols with (R) configuration. Since previous models and a reduction of a saturated analogue predicted propargyl products of (S) configuration, a series of new mechanistic studies were conducted to determine the likely orientation of aromatic, alkenyl, and alkynyl ketones in the transition state.

7.
J Am Chem Soc ; 132(32): 11379-85, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20698705

ABSTRACT

Photolysis of alpha-diazo-N-methoxy-N-methyl (Weinreb) beta-ketoamides derived from enantiomerically pure (EP) alpha-amino acids affords the corresponding EP beta-lactams via an intramolecular Wolff rearrangement. The photochemistry is promoted with either standard UV irradiation or through the use of a 100 W compact fluorescent light; the latter affords a safe and environmentally friendly alternative to standard photolysis conditions. A continuous-flow photochemical reactor made from inexpensive laboratory equipment reduced reaction times and was amenable to scale-up. The diastereoselectivity (cis or trans) of the product beta-lactams has been shown to vary from modest to nearly complete. An extremely facile, atom-economical method for the epimerization of the product mixture to the trans isomer, which is generally highly crystalline, has been developed. Evidence for C3 epimerization of Weinreb amide structures via a nonbasic, purely thermal route is presented. Subsequent transformations of both the Weinreb amide at C3 (beta-lactam numbering) and the amino acid side chain at C4 are well-tolerated, allowing for a versatile approach to diverse beta-lactam structures. The technology is showcased in the synthesis of a common intermediate used toward several carbapenem-derived structures starting from unfunctionalized aspartic acid.


Subject(s)
Amino Acids/chemistry , Lactams/chemistry , Lighting/methods , Photolysis , Stereoisomerism , Substrate Specificity
8.
J Cell Biochem ; 110(5): 1123-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20544796

ABSTRACT

Mammalian alpha4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target-of-rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell-cycle progression. alpha4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using alpha4 as bait in yeast two-hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of alpha4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)-binding protein (PABP), suggesting that PABP may also interact with alpha4. PABP recruits translation factors to the poly(A)-tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between alpha4 and EDD in rat Nb2 T-lymphoma and human MCF-7 breast cancer cell lines. alpha4 also interacted with PABP in Nb2, MCF-7 and the human Jurkat T-leukemic and K562 myeloma cell lines. COS-1 cells, transfected with Flag-tagged-pSG5-EDD, gave a (Flag)-EDD-alpha4 immunocomplex. Furthermore, deletion mutants of alpha4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C-terminal region of alpha4, independent of the alpha4-PP2Ac binding site. Therefore, in addition to PP2Ac, alpha4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell-cycle progression.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Poly(A)-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , Immunoblotting , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/genetics , Jurkat Cells , K562 Cells , Molecular Chaperones , Phosphoproteins/genetics , Poly(A)-Binding Proteins/genetics , Protein Binding , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
9.
J Phys Chem B ; 114(19): 6409-25, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20415431

ABSTRACT

Density functional theory was used to explore the effects of aqueous solvation on the structure, vibrational frequencies, and the electronic absorption spectrum of 2-(4-methylimidazol-1-yl)-phenol (Me-ImPhOH), a chemical analogue of the cross-linked histidine-tyrosine Cu(B) ligand of cytochrome c oxidase. In addition, the phenolic-OH pK(a), the anodic redox potential for the biring radical/anion couple, and the phenolic-OH bond dissociation energy were calculated relative to phenol using a series of isodesmic reactions. In the gas phase, the imidazole moiety stabilizes the biring anion for all the models and greatly decreases the phenolic-OH pK(a) relative to phenol. Moreover, the conductor-like polarizable continuum model (C-PCM)-water-solvated reactions predict Delta pK(a) values that are five times smaller than the gas-phase reactions, in agreement with the proposed role of the cross-linked histidine-tyrosine as a proton donor in the enzyme. For the neutral biring radical solvation models, the imidazole moiety induces a high degree of asymmetry into the phenol ring when compared to unmodified phenoxyl radical. The biring radical pi-bonds of the imidazole ring are more localized when compared to unmodified 1-methylimidazole and Me-ImPhOH solvation models, suggesting reduced aromaticity for all biring radical solvation models. The C-PCM-water-solvated reactions predict relative biring radical reduction potentials that are an order of magnitude smaller than the gas-phase reactions. The biring O-H bond is weakened relative to phenol by less than 4 kcal/mol for all the reactions studied, suggesting that the imidazole moiety does not facilitate H-atom abstraction in the enzyme. Together, these results demonstrate the sensitive nature of the proton and electron donating ability of the histidine-tyrosine cross-linked ligand in cytochrome c oxidase and suggest that for quantitative predictions of reaction energies and thermodynamic properties, models of this ligand should take care to account for changes in environment and, more specifically, hydrogen bonding interactions.


Subject(s)
Electron Transport Complex IV/chemistry , Histidine/chemistry , Ligands , Solvents/chemistry , Tyrosine/chemistry , Chemical Phenomena , Electron Transport Complex IV/metabolism , Gases/chemistry , Models, Chemical , Oxidation-Reduction , Spectrophotometry, Infrared , Thermodynamics
10.
J Phys Chem A ; 112(45): 11400-13, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18939813

ABSTRACT

The effects of aqueous solvation on the structure and vibrational frequencies of phenol, para-cresol, and their respective radicals are calculated at the B3LYP/6-31+G(d,p) level of theory using the conductor-like polarizable continuum model (C-PCM) alone and in combination with an explicit water molecule H-bonded to the phenolic oxygen. Calculated vibrational frequencies are compared to experimental frequencies obtained in aqueous buffer at high pH. For all models, the C-PCM provides the best overall agreement between theory and experiment at a modest computational effort, as demonstrated by the lowest mean absolute deviations in the computed frequencies. In addition, the C-PCM provides anion Wilson mode 7a (18)O isotope shifts in excellent agreement with experiment and improves agreement between the computed and observed radical Wilson mode 7a (2)H isotope shift. On the basis of a quantitative comparison of the anion and radical normal modes by vibrational projection analysis and total energy decomposition, an alternative criterion for distinguishing the anion and radical Wilson modes 7a and 19a using the relative phasing of the carbon-oxygen and carbon-carbon bond stretches is presented.


Subject(s)
Cresols/chemistry , Phenols/chemistry , Solvents/chemistry , Anions , Computer Simulation , Free Radicals , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...