Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 93(4): 1770-3, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20338457

ABSTRACT

On 3 consecutive cuttings, alfalfa from a single field was mowed with a John Deere 946 mower-conditioner (4-m cut width; Moline, IL) to leave narrow swaths (NS) ranging from 1.2 to 1.52 m wide (30-37% of cutter bar width) and wide swaths (WS) ranging from 2.44 to 2.74 m wide (62-67% of cutter bar width). Samples were collected from windrows and dry matter (DM) was monitored during wilting until a target of 43 to 45% DM was obtained. Forage from random windrows (n=4-6) was harvested by hand, chopped through a forage harvester before being packed in replicated vacuum-sealed bags, and allowed to ensile for 65 d. There was no swath width x cutting interaction for any parameter tested. Over all cuttings, the resulting silage DM was not different between the NS silage (43.8%) and the WS silage (44.9%). However, wide swathing greatly reduced the time of wilting before making silage. The hours of wilting time needed to reach the targeted DM for the NS silage compared with the WS silage at cuttings 1, 2, and 3 were 50 versus 29, 54 versus 28, and 25 versus 6, respectively. At the time of ensiling, the WS silage had more water-soluble carbohydrates (5.1%) than did the NS silage (3.7%). The WS silage had a lower pH (4.58) than did the NS silage (4.66), but swath width did not affect fermentation end products (lactic acid, acetic acid, and ethanol). The NS silage had more NH(3)-N (0.26%) than did the WS silage (0.21%). Wide swathing did not affect the concentration of ash or the digestibility of NDF, but it lowered the N content (NS=3.45%; WS=3.23%) and increased the ADF content (NS=39.7%; WS=40.9%) of the resulting silage. Wide swathing can markedly reduce the time that alfalfa must wilt before it can be chopped for silage, but under good conditions, as in this study, the resulting silage quality was generally not improved.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Food Handling/methods , Medicago sativa , Silage/standards , Animal Feed , Animals , Cattle/metabolism , Cattle/physiology , Fermentation , Food Microbiology , Humidity , Medicago sativa/microbiology , Medicago sativa/standards , Nutritive Value , Particle Size , Silage/microbiology , Temperature , Wind
2.
J Dairy Sci ; 92(8): 3907-14, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19620673

ABSTRACT

Whole-plant corn was harvested at 33 (normal) and 41% (moderately high) dry matter (DM) and ensiled in quadruplicate 20-L laboratory silos to investigate the effects of Lactobacillus buchneri 40788 (LB) or L. plantarum MTD-1 (LP) alone, or in combination, on the fermentation and aerobic stability of the resulting silage. Aerobic stability was defined as the amount of time after exposure to air for the silage temperature to reach 2 degrees C above ambient temperature. The chopped forage was used in a 2 x 2 x 2 factorial arrangement of treatments: normal and moderately high DM contents, LB at 0 (untreated) or 4 x 10(5) cfu/g of fresh forage, and LP at 0 or 1 x 10(5) cfu/g. After 240 d of ensiling, corn silage harvested at the moderately high DM had higher pH, higher concentrations of ethanol, and more yeasts compared with the silage ensiled at the normal DM content. Inoculation with LB did not affect the concentration of lactic acid in silages with a moderately high DM, but decreased the concentration of lactic acid in the silage with normal DM. Higher concentrations of acetic acid were found in the silage treated with LB compared with those not treated with this organism. Inoculation with LP increased the concentration of lactic acid only in the silage with the normal DM content. The concentration of acetic acid was lower in silage treated with LP with a moderately high DM content, but greater in the silage treated with LP with the normal DM content when compared with silages without this inoculant. Appreciable amounts of 1,2-propanediol (average 1.65%, DM basis) were found in all silages treated with LB regardless of the DM content. The addition of L. buchneri increased the concentration of NH(3)-N in silages but the addition of L. plantarum decreased it. Aerobic stability was improved in all silages treated with LB, with greater aerobic stability occurring in the silage with moderately high DM compared with silage with normal DM content. Inoculation with LP had no effect on aerobic stability. There were no interactions between L. buchneri and L. plantarum for most fermentation products or aerobic stability of the silages. This study showed that inoculating whole-plant corn with L. buchneri 40788 or L. plantarum MTD-1 has different beneficial effects on the resulting silage. There appear to be no major interactions between these organisms when added together to forage. Thus, there is potential to add both organisms simultaneously to improve the fermentation and aerobic stability of corn silage.


Subject(s)
Fermentation/physiology , Food Microbiology , Lactobacillus plantarum/physiology , Lactobacillus/physiology , Silage/analysis , Silage/standards , Zea mays , Aerobiosis , Silage/microbiology , Zea mays/chemistry , Zea mays/microbiology
3.
J Dairy Sci ; 92(3): 1050-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19233798

ABSTRACT

An experimental (7B) and a commercial (AMA) formulation of enzymes, both primarily with alpha-amylase activity, were evaluated for activity at various pH values, stability in ruminal fluid, the potential to improve in vitro ruminal fermentations, and the potential to improve production performance of lactating cows. When incubated (40 degrees C) in buffer with a pH between 5.4 and 6.0, 7B had about 10 to 25 times greater amylase activity than AMA, and enzyme activity in this range increased by 100% for 7B, whereas activity decreased by about 26% for AMA. Both formulations maintained enzyme activity when they were incubated in in vitro ruminal fermentations for 24 h. After 6 h of ruminal in vitro fermentation, additions of 7B resulted in linear increases in apparent total volatile fatty acid production for flint and dent corn but had no effect on floury corn. In a lactation trial, 28 Holstein cows (68 +/- 31 d in milk, 46.9 +/- 9.1 kg of milk/d) were fed a total mixed ration (TMR) supplemented with nothing (CON), a low dose of 7B [7BL, 0.88 mL/kg of TMR dry matter (DM)], a high dose of 7B (7BH, 4.4 mL/kg of TMR DM), or AMA (0.4 g/kg of TMR DM). The experiment was conducted as a 4. 4 Latin square design with 21-d periods. Cows fed 7BL, 7BH, and AMA ate similar amounts of DM, and cows fed the latter 2 diets consumed more DM than did cows fed CON. Cows fed 7BL produced more milk than cows fed CON and 7BH, but produced similar amounts to cows fed AMA. The production of 3.5% fat-corrected milk was greater from cows fed 7BL and AMA compared with cows fed CON. The percentages of milk fat and milk protein were unaffected by treatment. Total-tract digestion of DM and organic matter were greater for cows fed 7BL compared with those fed CON. The addition of exogenous amylase enzymes to the diets of lactating dairy cows has the potential to improve animal productivity.


Subject(s)
Cattle/metabolism , Dairying , Lactation/drug effects , alpha-Amylases/metabolism , alpha-Amylases/pharmacology , Animals , Digestion/drug effects , Digestion/physiology , Eating/drug effects , Eating/physiology , Fatty Acids, Volatile/metabolism , Female , Fermentation/physiology , Gastrointestinal Contents/chemistry , Gastrointestinal Contents/enzymology , Hydrogen-Ion Concentration , Lactation/physiology , Least-Squares Analysis , Random Allocation , Rumen/metabolism , Time Factors , Zea mays/metabolism , alpha-Amylases/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...