Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11778, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479740

ABSTRACT

Inhibition of actin remodeling in nerves modulates action potential propagation and therefore could be used to treat acute pain. N-001 is a novel protein analgesic engineered from several C. Botulinum toxins. N-001 targets sensory neurons through ganglioside GT1b binding and ADP-ribosylates G-actin reducing actin remodeling. The activity and efficacy of N-001 was evaluated previously in vitro and in a mouse inflammatory pain model. To assess the relevance of N-001 for treatment of acute post-surgical pain, the current study evaluated the efficacy of N-001 in a mouse hind-paw incision model by peri-incisional and popliteal nerve block administration combined with mechanical testing. N-001 provided relief of pain-like behavior over 3 days and 2 days longer than the conventional long-acting anesthetic bupivacaine. Preclinical safety studies of N-001 indicated the drug produced no toxic or adverse immunological reactions over multiple doses in mice. These results combined with past targeting results encourage further investigation of N-001 as an analgesic for post-operative pain management with the potential to function as a differential nociceptor-specific nerve block.


Subject(s)
Acute Pain , Biological Products , Mice , Animals , Anesthetics, Local , Acute Pain/drug therapy , Actins , Pain, Postoperative/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Biological Products/therapeutic use
2.
Plasmid ; 114: 102563, 2021 03.
Article in English | MEDLINE | ID: mdl-33515651

ABSTRACT

Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.


Subject(s)
Integrons , Wastewater , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Humans , Integrons/genetics , Metagenomics , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...