Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Environ Int ; 190: 108844, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38941943

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) receive global attention due to their adverse effects on human health and the environment. Fish consumption is a major source of human PFAS exposure. The aim of this work was to address the lack of harmonization within legislations (in the EU and the USA) and highlight the level of PFAS in fish exposed to pollution from diffuse sources in the context of current safety thresholds. A non-exhaustive literature review was carried out to obtain PFAS concentrations in wild fish from the Norwegian mainland, Svalbard, the Netherlands, the USA, as well as sea regions (North Sea, English Channel, Atlantic Ocean), and farmed fish on the Dutch market. Median sum wet weight concentrations of PFOA, PFNA, PFHxS, and PFOS ranged between 0.1 µg kg-1 (farmed fish) and 22 µg kg-1 (Netherlands eel). Most concentrations fell below the EU environmental quality standard (EQSbiota) for PFOS (9.1 µg kg-1) and would not be defined as polluted in the EU. However, using recent tolerable intake or reference dose values in the EU and the USA revealed that even limited fish consumption would lead to exceedance of these thresholds - possibly posing a challenge for risk communication.

2.
Environ Toxicol Chem ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923620

ABSTRACT

Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Sci Total Environ ; 855: 158842, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36122706

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals that are ubiquitous in environmental and biological systems, including human serum. PFASs are used in many products and industrial processes and are tied to numerous health effects. Due to multiple sources and exposure pathways, methods are needed to identify PFAS sources in communities to develop targeted interventions. We assessed effectiveness of three source apportionment methods (UNMIX, positive matrix factorization [PMF], and principal component analysis - multiple linear regression [PCA-MLR]) for identifying contributors to human serum PFAS concentrations in two highly exposed populations in Colorado and North Carolina where drinking water was contaminated via upstream sources, including a Space Force base and a fluorochemical manufacturing plant. UNMIX and PMF models extracted three to four potential PFAS exposure sources in the Colorado and North Carolina cohorts while PCA-MLR classified two in each cohort. No sources were characterized in NHANES (National Health and Nutrition Examination Study). Results suggest that these three methods can successfully identify sources in highly exposed populations. Future PFAS exposure research should focus on analyzing serum for an expanded PFAS panel, identifying cohorts with other distinct point source exposures, and combining biological and environmental data to better understand source apportionment results in the context of PFAS toxicokinetic behavior.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Nutrition Surveys , Drinking Water/analysis , Multivariate Analysis , Principal Component Analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 56(22): 15207-15219, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36314557

ABSTRACT

Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Purification , Fluorocarbons/chemistry , Caprylates/chemistry , Isomerism
5.
Environ Sci Technol Lett ; 9(6): 473-481, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35719859

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are important environmental contaminants, yet relatively few analytical reference standards exist for this class. Nontarget analyses performed by means of high-resolution mass spectrometry (HRMS) are increasingly common for the discovery and identification of PFASs in environmental and biological samples. The certainty of PFAS identifications made via HRMS must be communicated through a reliable and harmonized approach. Here, we present a confidence scale along with identification criteria specific to suspect or nontarget analysis of PFASs by means of nontarget HRMS. Confidence levels range from level 1a-"Confirmed by Reference Standard," and level 1b-"Indistinguishable from Reference Standard," to level 5-"Exact Masses of Interest," which are identified by suspect screening or data filtering, two common forms of feature prioritization. This confidence scale is consistent with general criteria for communicating confidence in the identification of small organic molecules by HRMS (e.g., through a match to analytical reference standards, library MS/MS, and/or retention times) but incorporates the specific conventions and tools used in PFAS classification and analysis (e.g., detection of homologous series and specific ranges of mass defects). Our scale clarifies the level of certainty in PFAS identification and, in doing so, facilitates more efficient identification.

6.
Environ Sci Technol ; 56(10): 6004-6013, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35324171

ABSTRACT

Determining health risks associated with per-/polyfluoroalkyl substances (PFASs) is a highly complex problem requiring massive efforts for scientists, risk assessors, and regulators. Among the most poorly understood pressing questions is the relative importance of pre-PFAAs, which are PFASs that degrade to highly persistent perfluoroalkyl acids. How many of the vast number of existing pre-PFAAs are relevant for direct human exposure, and what are the predominant exposure pathways? What evidence of direct exposure to pre-PFAAs is provided by human biomonitoring studies? How important are pre-PFAAs and their biotransformation products for human health risk assessment? This article outlines recent progress and recommendations toward widening the lens on human PFAS exposure to include the pre-PFAA subclass.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Biotransformation , Fishes , Fluorocarbons/analysis , Humans , Water Pollutants, Chemical/analysis
7.
Int J Hyg Environ Health ; 240: 113905, 2022 03.
Article in English | MEDLINE | ID: mdl-35065522

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFASs) are widespread and persistent environmental contaminants. Exposure to several PFASs has been associated with altered immune function in humans, including autoimmune disease and impaired response to vaccination. However, changes to the profile of inflammatory biomarkers in adults exposed to PFASs has not been extensively described. OBJECTIVE: To estimate cross-sectional associations between serum PFASs and markers of inflammation among adults in a population exposed to aqueous film forming foam (AFFF)-contaminated drinking water. METHODS: We quantified concentrations of 48 PFASs in non-fasting serum samples from 212 non-smoking adults. In the same serum samples, we measured concentrations of ten pro- and anti-inflammatory cytokines. We restricted analysis to seven PFASs detected in >85% of participants and the following four cytokines detected in ≥30% of participants: interleukin [IL]-1ß, IL-6, IL-10, and tumor necrosis factor [TNF]-α. We fit multiple linear regression or logistic regression models, adjusted for potential confounders, to estimate associations between concentrations of each PFAS and either continuous or categorical (above vs below limit of detection) concentrations of each cytokine. We additionally applied Bayesian kernel machine regression to describe the combined effect of the PFAS mixture on each cytokine outcome. RESULTS: Certain PFAS concentrations in this sample were elevated compared to a US nationally representative sample; median levels of PFHxS, ΣPFOS and ΣPFOA in this sample were 13.8, 2.1 and 1.7 times higher, respectively, than medians observed in the U.S. SAMPLE: Higher concentrations of multiple PFASs were significantly associated with lower odds of detectable IL-1ß. Weaker associations were observed with other cytokines. In general, perfluoroalkyl carboxylic acids had inverse associations with TNF-α, whereas the perfluoroalkyl sulfonic acids showed positive associations. CONCLUSIONS: We observed preliminary evidence of altered inflammatory profiles among adults with elevated serum concentrations of PFASs due to contaminated drinking water. Modifications to inflammatory pathways may be one mechanism by which PFAS exposures produce adverse health effects in humans, but this finding requires verification in longitudinal studies as well as phenotypic anchoring to immune function outcomes.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Adult , Bayes Theorem , Biomarkers , Cross-Sectional Studies , Drinking Water/analysis , Humans , Water Pollutants, Chemical/analysis
8.
Anal Bioanal Chem ; 414(3): 1201-1215, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34014358

ABSTRACT

Because of the pervasiveness, persistence, and toxicity of per- and polyfluoroalkyl substances (PFAS), there is growing concern over PFAS contamination, exposures, and health effects. The diversity of potential PFAS is astounding, with nearly 10,000 PFAS catalogued in databases to date (and growing). The ability to detect the thousands of known PFAS, and discover previously uncatalogued PFAS, is necessary to understand the scope of PFAS contamination and to identify appropriate remediation and regulatory solutions. Current non-targeted methods for PFAS analysis require manual curation and are time-consuming, prone to error, and not comprehensive. FluoroMatch Flow 2.0 is the first software to cover all steps of data processing for PFAS discovery in liquid chromatography-high-resolution tandem mass spectrometry samples. These steps include feature detection, feature blank filtering, exact mass matching to catalogued PFAS, mass defect filtering, homologous series detection, retention time pattern analysis, class-based MS/MS screening, fragment screening, and predicted MS/MS from SMILES structures. In addition, a comprehensive confidence level criterion is implemented to help users understand annotation certainty and integrate various layers of evidence to reduce overreporting. Applying the software to aqueous film forming foam analysis, we discovered over one thousand likely PFAS including previously unreported species. Furthermore, we were able to filter out 96% of features which were likely not PFAS. FluoroMatch Flow 2 increased coverage of likely PFAS by over tenfold compared to the previous release. This software will enable researchers to better characterize PFAS in the environment and in biological systems.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Fluorocarbons/analysis , Software , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods
9.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134358

ABSTRACT

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Environmental Monitoring , Humans , Puerto Rico , Water , Water Pollutants, Chemical/analysis
10.
Environ Sci Technol ; 55(12): 8139-8148, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34029073

ABSTRACT

Understanding how exposure to aqueous film-forming foam (AFFF)-impacted drinking water translates to bioaccumulation of per- and polyfluoroalkyl substances (PFASs) is essential to assess health risks. To investigate spatial variability of PFAS exposure in communities near an AFFF source zone, blood serum was collected in 2018 from 220 adult residents of El Paso County (Colorado), as were raw water samples from several wells. C6 and C8 perfluoroalkyl sulfonates (PFSAs) were predominant in serum and water. PFASs were most elevated in the water district nearest the source zone (median ∑PFSA of 618 ng/L in water and 33 ng/mL in serum). A novel PFAS, unsaturated perfluorooctane sulfonate, was detected in >80% of water and serum samples at low concentrations (≤1.9 ng/mL in serum). Drinking water wells nearest the source zone displayed increased prevalence of perfluoroalkyl sulfonamide precursors not detected in serum. Serum-to-water ratios were the greatest for long-chain PFASs and were elevated in the least impacted water district. Additional serum samples collected from a subset of study participants in June 2019 showed that PFAS concentrations in serum declined after exposure ceased, although declines for perfluoropentane sulfonate were minimal. Our findings demonstrate that AFFF-impacted communities are exposed to complex, spatially variable mixtures of PFASs.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Adult , Alkanesulfonic Acids/analysis , Colorado , Fluorocarbons/analysis , Humans , Serum , Water Pollutants, Chemical/analysis
11.
Environ Sci Process Impacts ; 23(4): 588-604, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33704290

ABSTRACT

Although poly- and perfluorinated alkyl substances (PFAS) are ubiquitous in the Arctic, their sources and fate in Arctic marine environments remain unclear. Herein, abiotic media (water, snow, and sediment) and biotic media (plankton, benthic organisms, fish, crab, and glaucous gull) were sampled to study PFAS uptake and fate in the marine food web of an Arctic Fjord in the vicinity of Longyearbyen (Svalbard, Norwegian Arctic). Samples were collected from locations impacted by a firefighting training site (FFTS) and a landfill as well as from a reference site. Mean concentration in the landfill leachate was 643 ± 84 ng L-1, while it was 365 ± 8.0 ng L-1 in a freshwater pond and 57 ± 4.0 ng L-1 in a creek in the vicinity of the FFTS. These levels were an order of magnitude higher than in coastal seawater of the nearby fjord (maximum level , at the FFTS impacted site). PFOS was the most predominant compound in all seawater samples and in freshly fallen snow (63-93% of ). In freshwater samples from the Longyear river and the reference site, PFCA ≤ C9 were the predominant PFAS (37-59%), indicating that both local point sources and diffuse sources contributed to the exposure of the marine food web in the fjord. concentrations increased from zooplankton (1.1 ± 0.32 µg kg-1 ww) to polychaete (2.8 ± 0.80 µg kg-1 ww), crab (2.9 ± 0.70 µg kg-1 ww whole-body), fish liver (5.4 ± 0.87 µg kg-1 ww), and gull liver (62.2 ± 11.2 µg kg-1). PFAS profiles changed with increasing trophic level from a large contribution of 6:2 FTS, FOSA and long-chained PFCA in zooplankton and polychaetes to being dominated by linear PFOS in fish and gull liver. The PFOS isomer profile (branched versus linear) in the active FFTS and landfill was similar to historical ECF PFOS. A similar isomer profile was observed in seawater, indicating major contribution from local sources. However, a PFOS isomer profile enriched by the linear isomer was observed in other media (sediment and biota). Substitutes for PFOS, namely 6:2 FTS and PFBS, showed bioaccumulation potential in marine invertebrates. However, these compounds were not found in organisms at higher trophic levels.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Arctic Regions , Environmental Monitoring , Fluorocarbons/analysis , Food Chain , Norway , Water Pollutants, Chemical/analysis
12.
Environ Int ; 152: 106487, 2021 07.
Article in English | MEDLINE | ID: mdl-33752165

ABSTRACT

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Humans , Massachusetts , United States , Water , Water Pollutants, Chemical/analysis , Water Supply
13.
Toxicol Sci ; 178(1): 104-114, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32898269

ABSTRACT

Aqueous film-forming foams (AFFFs) are complex per- and polyfluoroalkyl substance (PFAS)-containing mixtures used extensively as fire suppressants. AFFF-impacted groundwater and surface water have contaminated drinking water with PFASs in many communities, raising concerns about health effects from drinking water exposures. As individual PFASs have been identified as immune hazards, the immunotoxicity of complex PFAS mixtures is also a concern. Adult female and male C57BL/6 mice were given a commercial AFFF formulation for 10 days via gavage; administered dose was based on combined content of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) measured in the formulation (0, 1.88, 3.75, 7.5, or 10 mg PFOS+PFOA/kg body weight). A PFOA positive control of 7.5 mg/kg body weight was also given. Compared with the 0 mg/kg group, the following changes were noted: Body weights of males exposed to 7.5 and 10 mg PFOS+PFOA/kg were reduced by 15%, on average; female body weights did not differ. Average relative liver weights were increased 50%-200% in males and 37.5%-193% in females and liver peroxisome proliferation was increased 2- to 12-fold in all doses of both sexes. Antigen-specific antibody production was suppressed, on average, by 13% in males and by 12.4% in females across all doses. Spleen cellularity and lymphocyte subpopulations did not differ by dose for either sex. Our data indicate that though this complex PFAS mixture contained fairly low PFOA content, it induced changes in C57BL/6 mice similar to changes induced by PFOA alone, likely due to the presence of PFOS and many other PFASs.


Subject(s)
Flame Retardants/toxicity , Fluorocarbons/toxicity , Immune System/drug effects , Water Pollutants, Chemical/toxicity , Aerosols , Animals , Body Weight/drug effects , Female , Liver/drug effects , Male , Mice , Mice, Inbred C57BL
14.
Environ Sci Technol ; 54(9): 5700-5709, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32248687

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are widespread in the blood of the general human population, and their bioaccumulation is of considerable scientific and regulatory interest. PFAS exposure resulting from aqueous film-forming foam (AFFF) ingestion is poorly understood due to the complexity of AFFF mixtures and the presence of polyfluorinated substances that may undergo metabolic transformation. C57BL/6 mice were dosed with an AFFF primarily containing electrochemically fluorinated PFASs for 10 days, followed by a 6 day depuration. Urine was collected throughout the study and serum was collected post-depuration. Samples were analyzed via high-resolution mass spectrometry. Relative to the dosing solution, C6 and C7 perfluoroalkyl sulfonates (PFSAs) were enriched in dosed mouse serum, suggesting in vivo transformation of sulfonamide precursors. Some substituted C8 PFSAs [keto-perfluorooctane sulfonate (PFOS), hydrogen-PFOS, and unsaturated PFOS] appeared to be more bioaccumulative than linear PFOS, or were formed in vivo from unidentified precursors. A series of seven peaks in dosed mouse serum was tentatively identified as sulfonimide dimers that were either a minor component of the AFFF or were formed via metabolism of other AFFF components. This work highlights the importance of sulfonamide precursors in contributing to bioaccumulation of AFFF-associated PFSAs and identifies several classes of potentially bioaccumulative novel PFASs that warrant further investigation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanesulfonates , Animals , Bioaccumulation , Humans , Mice , Mice, Inbred C57BL , Water
15.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32126404

ABSTRACT

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Subject(s)
Water Purification , Chicago , Drinking Water , Michigan , Pesticides , United States , Water Pollutants, Chemical
16.
Int J Hyg Environ Health ; 223(1): 256-266, 2020 01.
Article in English | MEDLINE | ID: mdl-31444118

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a chemical class widely used in industrial and commercial applications because of their unique physical and chemical properties. Between 2013 and 2016 PFAS were detected in public water systems and private wells in El Paso County, Colorado. The contamination was likely due to aqueous film forming foams used at a nearby Air Force base. OBJECTIVE: To cross-sectionally describe the serum concentrations of PFAS in a highly exposed community, estimate associations with drinking water source, and explore potential demographic and behavioral predictors. METHODS: In June 2018, serum PFAS concentrations were quantified and questionnaires administered in 213 non-smoking adult (ages 19-93) participants residing in three affected water districts. Twenty PFAS were quantified and those detected in >50% of participants were analyzed: perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA) and perfluoroheptane sulfonate (PFHpS). Unadjusted associations were estimated between serum PFAS concentrations and several predictors, including water consumption, demographics, personal behaviors and employment. A multiple linear regression model estimated adjusted associations with smoking history. RESULTS: Study participants' median PFHxS serum concentration (14.8 ng/mL) was approximately 12 times as high as the U.S. national average. Median serum concentrations for PFOS, PFOA, PFNA and PFHpS were 9.7 ng/mL, 3.0 ng/mL, 0.4 ng/mL and 0.2 ng/mL, respectively. Determinants of PFHxS serum concentrations were water district of residence, frequency of bottled water consumption, age, race/ethnicity, and smoking history. Determinants of serum concentrations for the other four PFAS evaluated included: water district of residence, bottled water consumption, age, sex, race/ethnicity, smoking history, and firefighter or military employment. CONCLUSIONS: Determinants of serum concentrations for multiple PFAS, including PFHxS, included water district of residence and frequency of bottled water consumption. Participants' dominant PFAS exposure route was likely consumption of PFAS-contaminated water, but certain demographic and behavioral characteristics also predicted serum concentrations.


Subject(s)
Drinking Water/analysis , Environmental Exposure/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Pollution/statistics & numerical data , Adult , Aged , Aged, 80 and over , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Caprylates/analysis , Caprylates/blood , Demography , Female , Fluorocarbons/analysis , Fluorocarbons/blood , Humans , Male , Middle Aged , Socioeconomic Factors , Water Pollutants, Chemical/blood , Young Adult
17.
Environ Toxicol Chem ; 38(4): 748-759, 2019 04.
Article in English | MEDLINE | ID: mdl-30648756

ABSTRACT

The gaseous fraction of hydrophobic organic contaminants (HOCs) in ambient air appears to be responsible for a significant portion of aryl hydrocarbon receptor (AhR)-mediated activity, but the majority of compounds contributing to this activity remain unidentified. The present study investigated the use of polyethylene passive samplers to isolate gaseous HOCs from ambient air for use in in vitro bioassays and to improve our understanding of the toxicological relevance of the gaseous fraction of ambient air in urban and residential environments. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic flame retardants were measured in polyethylene passive sampler extracts. Extracts were also analyzed using an in vitro bioassay to measure AhR-mediated activity. Bioassay-derived benzo[a]pyrene (BaP) equivalents (BaP-Eqbio ), a measure of potency of HOC mixtures, were greatest in the downtown Cleveland area and lowest at rural/residential sites further from the city center. The BaP-Eqbio was weakly correlated with concentrations of 2-ring alkyl/substituted PAHs and one organophosphate flame retardant, ethylhexyl diphenyl phosphate. Potency predicted based on literature-derived induction equivalency factors (IEFs) explained only 2 to 23% of the AhR-mediated potency observed in bioassay experiments. Our results suggests that health risks of gaseous ambient air pollution predicted using data from targeted chemical analysis may underestimate risks of exposure, most likely due to augmentation of potency by unmonitored chemicals in the mixture, and the lack of relevant IEFs for many targeted analytes. Environ Toxicol Chem 2019;38:748-759. © 2019 SETAC.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Receptors, Aryl Hydrocarbon/metabolism , Air Pollutants/metabolism , Animals , Biological Assay , Cell Line, Tumor , Genes, Reporter , Green Fluorescent Proteins/genetics , Mice , Polycyclic Aromatic Hydrocarbons/metabolism , Receptors, Aryl Hydrocarbon/genetics , Transfection
18.
Curr Opin Environ Sci Health ; 7: 13-18, 2019 Feb.
Article in English | MEDLINE | ID: mdl-33103012

ABSTRACT

Millions of people around the world may be exposed to drinking water impacted by per- and polyfluoroalkyl substances (PFASs) at levels exceeding local or national advisories. Many studies indicate that the full extent of PFAS contamination is significantly underestimated when only targeted analytical methods are used. Here, we review techniques using bulk organofluorine measurement to quantify the (as of yet) unidentified fraction of PFASs. We discuss advantages and disadvantages of specific approaches and their applicability to water analysis with a focus on the tradeoff between selectivity and inclusivity, and provide suggestions for a path forward to better characterize the wide array of PFASs present in environmental samples.

19.
J Hazard Mater ; 366: 160-168, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30522083

ABSTRACT

Contamination of drinking water sources with per- and polyfluoroalkyl substances (PFASs) is a major challenge for environmental engineers. While granular activated carbon (GAC) is an effective adsorbent-based treatment technology for long-chained PFASs, GAC is less effective for removal of short-chained compounds, necessitating a more complete treatment strategy. Super-fine powder activated carbon (SPAC; particle diameter <1 um) is potentially a superior adsorbent to GAC due to high specific surface area and faster adsorption kinetics. This study served to evaluate SPAC coupled with ceramic microfiltration (CMF) for PFAS removal in a continuous flow system. Comparison of PFAS mass loading rates onto SPAC and GAC to 10% breakthrough of PFASs using contaminated groundwater indicates that SPAC has nearly double the adsorption potential of GAC. Limitations reaching breakthrough for the SPAC system led to additional higher mass loading experiments where PFAS adsorption onto SPAC reached 2990 µg/g (for quantifiable PFASs), 480x greater than GAC and is thought to be a function of adsorbent size, pore content and PFAS chain length. Additional analysis of system performance through the application of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) revealed the presence of additional PFASs in influent samples that were removed by the SPAC/CMF system.

20.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30460851

ABSTRACT

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Subject(s)
Drinking Water , Pesticides , Water Pollutants, Chemical , Environmental Monitoring , Humans , United States , Water Supply , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL
...